探索未来文本分类:Channel LM Prompting 框架
2024-06-20 14:28:07作者:尤辰城Agatha
本文将向您介绍一个创新的开源项目——Channel LM Prompting,这是一个由Sewon Min等人开发并维护的文本分类框架,基于语言模型的提示学习。这个库不仅提供了对原论文方法的实现,还涵盖了众多最新的提示学习研究,如零样本学习、直接法增强等。让我们一起深入了解这个项目及其潜在的应用。
项目介绍
Channel LM Prompting项目的目标是利用预训练的大规模语言模型进行少量示例文本分类任务。它引入了一种新颖的噪声信道模型,以改善在有限数据下的性能,并且集成了多种提示学习策略,让你可以轻松比较和评估不同方法的效果。项目中提供的代码清晰易懂,为研究人员和开发者提供了一个实验平台,以探索如何更高效地利用大型语言模型的潜力。
项目技术分析
该项目的核心是噪声信道模型与直接法的结合。在零样本和演示基线(concat-based demonstration)方法上进行改进,通过添加“示例”来提高模型的泛化能力。此外,它还包括了近期关于提示学习的研究,如标准微调、提示调优、头部调优以及转换调优。所有这些技术都在一个统一的代码库中实现,方便比较和实验。
应用场景
这个项目适合于以下场景:
- 学术研究:对于希望深入理解提示学习或探索新方法的自然语言处理研究者。
- 实际应用:在资源有限但需要高精度分类的环境中,例如小语种文本分类、特定领域文本分类等。
- 教育训练:用于教学,帮助学生实践理解和实现最先进的文本分类技巧。
项目特点
- 全面性:涵盖多项提示学习方法,包括最新研究的实现。
- 可扩展性:易于添加新的提示策略或模型。
- 灵活性:支持多种预训练语言模型,如GPT2的不同版本。
- 易用性:清晰的文档和示例,让设置和运行实验变得简单。
要开始使用,请按照项目中的安装指南进行操作,并下载预处理的数据集。对于那些想要进一步深入的,可以尝试调整参数,或者结合其他预训练模型进行实验。
总的来说,Channel LM Prompting项目是一个强大的工具,它开启了利用大规模预训练语言模型进行高效文本分类的新可能。无论你是研究人员还是开发者,都值得尝试这一前沿技术,看看它如何推动你的项目向前发展。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136