在G6中实现类似X6的曼哈顿路由算法
2025-05-20 11:50:07作者:伍霜盼Ellen
曼哈顿路由算法简介
曼哈顿路由(Manhattan Routing)是一种在可视化图表中常用的边路由算法,其特点是连接线仅由水平和垂直线段组成,形成类似曼哈顿城市街道布局的路径。这种路由方式在节点密集的图表中特别有用,能够清晰地展示连接关系,同时自动避开障碍物(其他节点)。
G6与X6的路由差异
G6和X6都是AntV旗下的图可视化引擎,但在路由功能实现上有所不同。X6内置了曼哈顿路由算法,而G6默认不提供此功能。开发者需要在G6中自行实现类似的路由效果。
实现思路
要在G6中实现曼哈顿路由,可以考虑以下几种方法:
1. 自定义边形状
通过继承G6的边基类,重写绘制逻辑:
G6.registerEdge('manhattan-edge', {
draw(cfg, group) {
// 计算曼哈顿路径点
const points = this.getManhattanPoints(cfg);
// 绘制路径
const path = [];
for (let i = 0; i < points.length - 1; i++) {
path.push(['L', points[i+1].x, points[i+1].y]);
}
return group.addShape('path', {
attrs: {
path: [['M', points[0].x, points[0].y], ...path],
stroke: '#333',
lineWidth: 1
}
});
},
getManhattanPoints(cfg) {
// 实现曼哈顿路径点计算逻辑
// 包括障碍物检测和路径规划
}
});
2. 使用路径规划算法
实现一个基于网格的路径规划算法:
- 将画布划分为网格
- 标记障碍物(节点)占据的网格
- 使用A*或Dijkstra算法在网格上寻找路径
- 将网格路径转换为曼哈顿风格的折线
3. 结合物理引擎
对于更复杂的场景,可以结合物理引擎:
- 将边视为有弹性的连接线
- 设置排斥力使边避开节点
- 约束边只能沿水平和垂直方向移动
关键实现细节
障碍物检测
需要准确计算节点在画布上的位置和大小,判断哪些区域被占用。可以使用四叉树等空间索引结构加速检测。
路径优化
生成的曼哈顿路径可能不是最优的,需要进一步优化:
- 消除不必要的拐点
- 合并共线的线段
- 调整路径使其更美观
性能考虑
在大型图表中,路径计算可能成为性能瓶颈。可以考虑:
- 只在需要时计算路径
- 缓存计算结果
- 使用Web Worker进行后台计算
实际应用建议
- 对于简单场景,自定义边形状通常足够
- 中等复杂度图表建议使用网格路径规划
- 非常复杂的交互式图表可考虑物理引擎方案
实现曼哈顿路由时,需要根据具体应用场景权衡功能复杂度和性能要求,选择最适合的实现方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328