Riverpod中AutoDisposeAsyncNotifierProviderFamily的正确使用方法
概述
在使用Riverpod状态管理库时,开发者可能会遇到AutoDisposeFamilyAsyncNotifierProvider相关的使用问题。本文将详细介绍如何正确使用AutoDisposeAsyncNotifierProviderFamily类来创建带参数的异步状态管理。
问题背景
在Riverpod中,当我们需要创建一个带参数的异步状态管理时,通常会使用Family类型的provider。然而,开发者容易混淆AutoDisposeFamilyAsyncNotifierProvider和AutoDisposeAsyncNotifierProviderFamily这两个相似的类名。
正确实现方式
1. 状态类定义
首先定义一个简单的状态类,用于存储我们需要管理的数据:
class ExampleState {
final String id;
ExampleState(this.id);
}
2. Notifier类实现
创建一个继承自AutoDisposeFamilyAsyncNotifier的Notifier类,实现build方法:
class ExampleNotifier
extends AutoDisposeFamilyAsyncNotifier<ExampleState, String> {
@override
FutureOr<ExampleState> build(arg) {
return ExampleState(arg);
}
}
3. Provider定义
关键点在于正确使用AutoDisposeAsyncNotifierProviderFamily来创建provider:
final exampleProvider = AutoDisposeAsyncNotifierProviderFamily<ExampleNotifier,
ExampleState, String>(
ExampleNotifier.new,
);
注意这里使用的是AutoDisposeAsyncNotifierProviderFamily,而不是AutoDisposeFamilyAsyncNotifierProvider。
4. Widget中使用
在Widget中可以通过以下方式使用这个provider:
class ExampleWidget extends ConsumerWidget {
const ExampleWidget({super.key});
@override
Widget build(BuildContext context, WidgetRef ref) {
final state = ref.watch(exampleProvider('1'));
return Container();
}
}
常见错误
-
类名混淆:容易将
AutoDisposeAsyncNotifierProviderFamily和AutoDisposeFamilyAsyncNotifierProvider混淆使用。 -
参数传递错误:在watch时忘记传递参数,或者传递的参数类型与定义不符。
-
状态类型不匹配:Notifier中定义的状态类型与provider中定义的不一致。
最佳实践
-
使用Riverpod的代码生成功能可以避免手动编写这些容易出错的代码。
-
保持命名一致性,所有Family类型的provider都以
Family结尾。 -
在团队开发中,建立统一的provider命名规范。
总结
正确使用Riverpod中的Family类型provider需要注意类名的准确性和参数传递的正确性。通过理解AutoDisposeAsyncNotifierProviderFamily的使用方法,开发者可以更高效地实现带参数的异步状态管理。记住,当遇到类似问题时,首先检查类名是否正确,其次是参数类型是否匹配。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00