Riverpod中AutoDisposeAsyncNotifierProviderFamily的正确使用方法
概述
在使用Riverpod状态管理库时,开发者可能会遇到AutoDisposeFamilyAsyncNotifierProvider相关的使用问题。本文将详细介绍如何正确使用AutoDisposeAsyncNotifierProviderFamily类来创建带参数的异步状态管理。
问题背景
在Riverpod中,当我们需要创建一个带参数的异步状态管理时,通常会使用Family类型的provider。然而,开发者容易混淆AutoDisposeFamilyAsyncNotifierProvider和AutoDisposeAsyncNotifierProviderFamily这两个相似的类名。
正确实现方式
1. 状态类定义
首先定义一个简单的状态类,用于存储我们需要管理的数据:
class ExampleState {
final String id;
ExampleState(this.id);
}
2. Notifier类实现
创建一个继承自AutoDisposeFamilyAsyncNotifier的Notifier类,实现build方法:
class ExampleNotifier
extends AutoDisposeFamilyAsyncNotifier<ExampleState, String> {
@override
FutureOr<ExampleState> build(arg) {
return ExampleState(arg);
}
}
3. Provider定义
关键点在于正确使用AutoDisposeAsyncNotifierProviderFamily来创建provider:
final exampleProvider = AutoDisposeAsyncNotifierProviderFamily<ExampleNotifier,
ExampleState, String>(
ExampleNotifier.new,
);
注意这里使用的是AutoDisposeAsyncNotifierProviderFamily,而不是AutoDisposeFamilyAsyncNotifierProvider。
4. Widget中使用
在Widget中可以通过以下方式使用这个provider:
class ExampleWidget extends ConsumerWidget {
const ExampleWidget({super.key});
@override
Widget build(BuildContext context, WidgetRef ref) {
final state = ref.watch(exampleProvider('1'));
return Container();
}
}
常见错误
-
类名混淆:容易将
AutoDisposeAsyncNotifierProviderFamily和AutoDisposeFamilyAsyncNotifierProvider混淆使用。 -
参数传递错误:在watch时忘记传递参数,或者传递的参数类型与定义不符。
-
状态类型不匹配:Notifier中定义的状态类型与provider中定义的不一致。
最佳实践
-
使用Riverpod的代码生成功能可以避免手动编写这些容易出错的代码。
-
保持命名一致性,所有Family类型的provider都以
Family结尾。 -
在团队开发中,建立统一的provider命名规范。
总结
正确使用Riverpod中的Family类型provider需要注意类名的准确性和参数传递的正确性。通过理解AutoDisposeAsyncNotifierProviderFamily的使用方法,开发者可以更高效地实现带参数的异步状态管理。记住,当遇到类似问题时,首先检查类名是否正确,其次是参数类型是否匹配。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00