FlashInfer项目中Hopper架构下非连续分页KV存储的预填充注意力机制实现
背景介绍
FlashInfer是一个高性能的注意力机制实现库,特别针对不同NVIDIA GPU架构进行了优化。在最新版本中,项目引入了对非连续分页KV存储(paged_kv)的支持,允许用户使用自定义步长(stride)的内存布局。这种灵活性对于某些特定场景下的内存优化尤为重要。
技术挑战
在Hopper架构(SM90)之前的GPU上,预填充注意力(prefill attention)内核已经能够很好地支持自定义步长的分页KV存储布局,例如[max_num_pages, num_layer, 2, page_size, num_heads, head_dim]这样的内存结构。然而,当尝试在Hopper架构上使用相同配置时,开发者发现相关参数定义中缺少对自定义步长的直接支持。
解决方案
FlashInfer团队针对Hopper架构采用了不同的实现策略:
-
预处理偏移量:不同于直接在内核中计算指针偏移,团队选择在调用内核前预先计算好所有偏移量。这种设计决策源于性能考量——在内核中进行指针算术运算会导致生产者性能下降。
-
偏移量转换:将分页存储的步长(stride_page)转换为具体的偏移量,前提是满足stride_block % stride_n == 0的条件。这种转换确保了内存访问的高效性。
-
性能优化考量:通过尽量减少内核中的指针运算,预计算偏移量的方法显著提升了整体性能,特别是在处理非连续内存布局时。
实现细节
在代码实现层面,FlashInfer通过以下方式支持Hopper架构的非连续分页KV存储:
- 在Python接口层进行步长到偏移量的转换
- 将转换后的偏移量传递给底层CUDA内核
- 在内核中使用预处理好的偏移量进行高效内存访问
未来优化方向
虽然当前实现已经解决了基本功能需求,但仍有优化空间:
-
统一接口设计:考虑将偏移量计算逻辑整合到PrefillSM90Plan中,使SM90前和SM90后的接口使用方式保持一致。
-
条件性优化:如果不同层使用相同的索引模式,可以将偏移量计算逻辑上移到计划(plan)阶段,进一步减少重复计算。
总结
FlashInfer项目通过创新的预处理偏移量方法,成功在Hopper架构上实现了对非连续分页KV存储的支持。这种设计不仅解决了功能需求,还通过减少内核中的指针运算显著提升了性能。随着项目的持续发展,接口统一化和进一步性能优化将是重点方向。
- QQwen3-Omni-30B-A3B-InstructQwen3-Omni是多语言全模态模型,原生支持文本、图像、音视频输入,并实时生成语音。00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0269get_jobs
💼【AI找工作助手】全平台自动投简历脚本:(boss、前程无忧、猎聘、拉勾、智联招聘)Java00AudioFly
AudioFly是一款基于LDM架构的文本转音频生成模型。它能生成采样率为44.1 kHz的高保真音频,且与文本提示高度一致,适用于音效、音乐及多事件音频合成等任务。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile08
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









