FlashInfer项目中Hopper架构下非连续分页KV存储的预填充注意力机制实现
背景介绍
FlashInfer是一个高性能的注意力机制实现库,特别针对不同NVIDIA GPU架构进行了优化。在最新版本中,项目引入了对非连续分页KV存储(paged_kv)的支持,允许用户使用自定义步长(stride)的内存布局。这种灵活性对于某些特定场景下的内存优化尤为重要。
技术挑战
在Hopper架构(SM90)之前的GPU上,预填充注意力(prefill attention)内核已经能够很好地支持自定义步长的分页KV存储布局,例如[max_num_pages, num_layer, 2, page_size, num_heads, head_dim]这样的内存结构。然而,当尝试在Hopper架构上使用相同配置时,开发者发现相关参数定义中缺少对自定义步长的直接支持。
解决方案
FlashInfer团队针对Hopper架构采用了不同的实现策略:
-
预处理偏移量:不同于直接在内核中计算指针偏移,团队选择在调用内核前预先计算好所有偏移量。这种设计决策源于性能考量——在内核中进行指针算术运算会导致生产者性能下降。
-
偏移量转换:将分页存储的步长(stride_page)转换为具体的偏移量,前提是满足stride_block % stride_n == 0的条件。这种转换确保了内存访问的高效性。
-
性能优化考量:通过尽量减少内核中的指针运算,预计算偏移量的方法显著提升了整体性能,特别是在处理非连续内存布局时。
实现细节
在代码实现层面,FlashInfer通过以下方式支持Hopper架构的非连续分页KV存储:
- 在Python接口层进行步长到偏移量的转换
- 将转换后的偏移量传递给底层CUDA内核
- 在内核中使用预处理好的偏移量进行高效内存访问
未来优化方向
虽然当前实现已经解决了基本功能需求,但仍有优化空间:
-
统一接口设计:考虑将偏移量计算逻辑整合到PrefillSM90Plan中,使SM90前和SM90后的接口使用方式保持一致。
-
条件性优化:如果不同层使用相同的索引模式,可以将偏移量计算逻辑上移到计划(plan)阶段,进一步减少重复计算。
总结
FlashInfer项目通过创新的预处理偏移量方法,成功在Hopper架构上实现了对非连续分页KV存储的支持。这种设计不仅解决了功能需求,还通过减少内核中的指针运算显著提升了性能。随着项目的持续发展,接口统一化和进一步性能优化将是重点方向。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00