首页
/ FlashInfer项目中Hopper架构下非连续分页KV存储的预填充注意力机制实现

FlashInfer项目中Hopper架构下非连续分页KV存储的预填充注意力机制实现

2025-06-29 13:15:23作者:秋泉律Samson

背景介绍

FlashInfer是一个高性能的注意力机制实现库,特别针对不同NVIDIA GPU架构进行了优化。在最新版本中,项目引入了对非连续分页KV存储(paged_kv)的支持,允许用户使用自定义步长(stride)的内存布局。这种灵活性对于某些特定场景下的内存优化尤为重要。

技术挑战

在Hopper架构(SM90)之前的GPU上,预填充注意力(prefill attention)内核已经能够很好地支持自定义步长的分页KV存储布局,例如[max_num_pages, num_layer, 2, page_size, num_heads, head_dim]这样的内存结构。然而,当尝试在Hopper架构上使用相同配置时,开发者发现相关参数定义中缺少对自定义步长的直接支持。

解决方案

FlashInfer团队针对Hopper架构采用了不同的实现策略:

  1. 预处理偏移量:不同于直接在内核中计算指针偏移,团队选择在调用内核前预先计算好所有偏移量。这种设计决策源于性能考量——在内核中进行指针算术运算会导致生产者性能下降。

  2. 偏移量转换:将分页存储的步长(stride_page)转换为具体的偏移量,前提是满足stride_block % stride_n == 0的条件。这种转换确保了内存访问的高效性。

  3. 性能优化考量:通过尽量减少内核中的指针运算,预计算偏移量的方法显著提升了整体性能,特别是在处理非连续内存布局时。

实现细节

在代码实现层面,FlashInfer通过以下方式支持Hopper架构的非连续分页KV存储:

  • 在Python接口层进行步长到偏移量的转换
  • 将转换后的偏移量传递给底层CUDA内核
  • 在内核中使用预处理好的偏移量进行高效内存访问

未来优化方向

虽然当前实现已经解决了基本功能需求,但仍有优化空间:

  1. 统一接口设计:考虑将偏移量计算逻辑整合到PrefillSM90Plan中,使SM90前和SM90后的接口使用方式保持一致。

  2. 条件性优化:如果不同层使用相同的索引模式,可以将偏移量计算逻辑上移到计划(plan)阶段,进一步减少重复计算。

总结

FlashInfer项目通过创新的预处理偏移量方法,成功在Hopper架构上实现了对非连续分页KV存储的支持。这种设计不仅解决了功能需求,还通过减少内核中的指针运算显著提升了性能。随着项目的持续发展,接口统一化和进一步性能优化将是重点方向。

登录后查看全文
热门项目推荐
相关项目推荐

热门内容推荐

最新内容推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
148
1.95 K
kernelkernel
deepin linux kernel
C
22
6
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
274
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
931
555
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
980
395
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0
openHiTLS-examplesopenHiTLS-examples
本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
65
515