OpenRLHF项目中SFT训练损失计算问题的技术分析
2025-06-02 09:15:36作者:邵娇湘
问题背景
在OpenRLHF项目的监督式微调(SFT)训练过程中,发现了一个关于损失掩码(loss_mask)处理的潜在问题。这个问题会影响模型训练时对生成文本第一个token的学习效果。
技术细节分析
在SFT训练中,通常需要区分输入提示(prompt)和模型生成(response)的部分。项目中的实现方式是通过loss_mask来标记哪些位置的token需要计算损失。具体实现中:
-
对于单轮对话数据,代码设置了
loss_mask[0, prompt_ids_len:-1] = 1,这意味着:- 提示部分的token不计算损失(掩码为0)
- 生成部分的token(除最后一个)计算损失(掩码为1)
- 序列结束符
<eot>不计算损失
-
在计算损失时,使用了
loss_mask[:, :-1]作为掩码,与per_token_log_probs相乘
问题具体表现
以一个具体例子说明:
- 输入提示:"Hello"
- 模型生成:", World !"
理想情况下,我们希望模型学习生成完整的响应部分。但当前实现会导致:
loss_mask原始值为[0, 1, 1, 1, 0](对应[提示, ',', 'World', '!', ''])- 取
loss_mask[:, :-1]后变为[0, 1, 1, 1] - 而
per_token_log_probs对应的是[',', 'World', '!', '']的log概率 - 最终损失计算会忽略第一个生成token(逗号)的log概率
影响评估
这个问题会导致:
- 模型对生成文本的第一个token学习不充分
- 可能影响生成文本的起始质量
- 在连贯性要求高的任务中表现更明显
解决方案
正确的实现应该确保:
- 所有生成token(包括第一个)都参与损失计算
- 只有提示部分和结束符不计算损失
- 损失掩码和log概率的对齐要准确
最佳实践建议
在实现SFT训练的损失计算时,建议:
- 明确区分输入和生成部分的边界
- 仔细检查掩码和log概率的维度对齐
- 添加单元测试验证损失计算的正确性
- 考虑使用更直观的掩码生成方式,如直接标记生成部分
总结
OpenRLHF项目中发现的这个SFT训练问题,虽然看似是一个简单的掩码处理错误,但实际上反映了在序列生成任务中损失计算需要特别注意的细节。正确的损失计算对于模型学习生成质量至关重要,特别是在处理序列起始部分时。这类问题也提醒我们在实现类似功能时,需要仔细验证每个处理步骤的准确性。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
191
210
暂无简介
Dart
630
143
React Native鸿蒙化仓库
JavaScript
243
316
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
481
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
270
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
296
107
仓颉编译器源码及 cjdb 调试工具。
C++
128
858
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210