OpenRLHF项目中SFT训练损失计算问题的技术分析
2025-06-02 18:38:03作者:邵娇湘
问题背景
在OpenRLHF项目的监督式微调(SFT)训练过程中,发现了一个关于损失掩码(loss_mask)处理的潜在问题。这个问题会影响模型训练时对生成文本第一个token的学习效果。
技术细节分析
在SFT训练中,通常需要区分输入提示(prompt)和模型生成(response)的部分。项目中的实现方式是通过loss_mask来标记哪些位置的token需要计算损失。具体实现中:
-
对于单轮对话数据,代码设置了
loss_mask[0, prompt_ids_len:-1] = 1,这意味着:- 提示部分的token不计算损失(掩码为0)
- 生成部分的token(除最后一个)计算损失(掩码为1)
- 序列结束符
<eot>不计算损失
-
在计算损失时,使用了
loss_mask[:, :-1]作为掩码,与per_token_log_probs相乘
问题具体表现
以一个具体例子说明:
- 输入提示:"Hello"
- 模型生成:", World !"
理想情况下,我们希望模型学习生成完整的响应部分。但当前实现会导致:
loss_mask原始值为[0, 1, 1, 1, 0](对应[提示, ',', 'World', '!', ''])- 取
loss_mask[:, :-1]后变为[0, 1, 1, 1] - 而
per_token_log_probs对应的是[',', 'World', '!', '']的log概率 - 最终损失计算会忽略第一个生成token(逗号)的log概率
影响评估
这个问题会导致:
- 模型对生成文本的第一个token学习不充分
- 可能影响生成文本的起始质量
- 在连贯性要求高的任务中表现更明显
解决方案
正确的实现应该确保:
- 所有生成token(包括第一个)都参与损失计算
- 只有提示部分和结束符不计算损失
- 损失掩码和log概率的对齐要准确
最佳实践建议
在实现SFT训练的损失计算时,建议:
- 明确区分输入和生成部分的边界
- 仔细检查掩码和log概率的维度对齐
- 添加单元测试验证损失计算的正确性
- 考虑使用更直观的掩码生成方式,如直接标记生成部分
总结
OpenRLHF项目中发现的这个SFT训练问题,虽然看似是一个简单的掩码处理错误,但实际上反映了在序列生成任务中损失计算需要特别注意的细节。正确的损失计算对于模型学习生成质量至关重要,特别是在处理序列起始部分时。这类问题也提醒我们在实现类似功能时,需要仔细验证每个处理步骤的准确性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
433
3.29 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
352
Ascend Extension for PyTorch
Python
237
271
暂无简介
Dart
690
162
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
仓颉编程语言运行时与标准库。
Cangjie
143
881
React Native鸿蒙化仓库
JavaScript
266
327
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
211
115
仓颉编译器源码及 cjdb 调试工具。
C++
138
869