al-folio项目中Google Scholar引用计数获取失败问题分析
问题背景
在学术个人网站生成工具al-folio中,用户发现通过GitHub CI部署的网站无法正确显示Google Scholar的引用计数数据。这是一个影响学术展示效果的重要功能问题。
现象描述
部署后的网站页面中,Google Scholar引用计数部分显示异常,通常表现为空白或默认值。通过检查日志可以发现,系统在尝试从Google Scholar获取数据时收到了403 Forbidden的HTTP错误响应。
根本原因
经过分析,这个问题主要由以下两个因素导致:
-
Google的反爬虫机制:Google Scholar会检测异常的访问频率,当来自同一IP地址的请求过多时,会临时封锁该IP地址,返回403错误。
-
CI环境限制:GitHub Actions的CI环境使用共享IP池,这些IP可能已经被Google标记为可疑来源,导致请求被拒绝。
解决方案
针对这个问题,可以考虑以下几种技术方案:
1. 增加请求间隔
在爬取Google Scholar数据时,增加请求之间的时间间隔,避免触发Google的反爬虫机制。可以通过修改代码中的延迟参数来实现。
2. 本地缓存策略
实现一个本地缓存系统,将获取到的引用计数数据保存下来,避免每次部署都重新请求Google Scholar。可以设置合理的缓存过期时间(如24小时)。
3. 使用IP轮换服务
在CI环境中使用IP轮换服务,通过不同的网络地址进行请求,降低被封锁的风险。但需要注意Google Scholar的服务条款是否允许这样做。
4. 手动更新机制
提供一个手动更新引用的功能,让用户可以在本地运行脚本获取数据后,将结果提交到仓库中。
最佳实践建议
对于al-folio用户,建议采取以下措施:
- 在本地环境中测试并获取Google Scholar数据
- 将获取到的数据提交到代码仓库中
- 减少CI环境中对Google Scholar的直接请求
- 考虑使用其他学术指标作为补充展示
总结
Google Scholar数据获取问题在学术网站建设中很常见,al-folio项目面临的这个挑战需要综合考虑技术实现和服务条款限制。通过合理的请求策略和缓存机制,可以在遵守规则的前提下,为学术网站提供可靠的引用数据显示功能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
MiniCPM-SALAMiniCPM-SALA 正式发布!这是首个有效融合稀疏注意力与线性注意力的大规模混合模型,专为百万级token上下文建模设计。00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01