首页
/ 时间序列论文资源指南 📚🚀

时间序列论文资源指南 📚🚀

2024-08-31 03:39:01作者:齐添朝

项目介绍

欢迎来到时间序列论文资源库!此项目由Xiyuanzh维护,是一个精心整理的,专门聚焦于人工智能领域内时间序列分析相关论文的集合。它旨在为研究人员、开发人员以及所有对时序数据处理感兴趣的人士提供一个全面且最新的参考资料列表。涵盖了从基础的时间序列预测到复杂的空间Temporal Graph神经网络的最新研究成果,帮助您紧跟学术前沿,探索时间序列分析的各种现代方法。

项目快速启动

要开始利用这个宝贵的资源,首先您需要克隆或下载此GitHub仓库:

git clone https://github.com/xiyuanzh/time-series-papers.git

克隆完成后,您可以浏览各文件夹或直接在浏览器中打开PDF文件来阅读论文。对于每篇论文,通常您可以在对应的年份和会议标签下找到简短的解读(部分为英文),有时还可能链接到官方实现或者代码仓库,以便进行更深入的研究或实验。

cd time-series-papers

之后,您可以根据自己的研究兴趣,定位到具体的子目录或通过搜索功能查找特定主题的论文。

应用案例和最佳实践

虽然此项目主要聚焦于理论文献,但每一项研究背后都隐含着广泛的应用可能性。例如,使用SSSD(Structured State Space Models)进行时间序列填补与预测,可以应用于金融市场的趋势预测;而基于图神经网络的模型如STGCN适合解决交通流量预测或社交网络动态建模等空间-时间问题。开发者和研究者应参考论文中的实验部分,了解这些技术如何被成功应用,并尝试在相似场景中复现或创新。

  • 示例:STGCN为例,其在IJCAI 2018上的发表揭示了如何结合时空图卷积来优化交通预测。开发者可以通过理解它的架构,将类似的方法用于城市交通管理系统的优化。

典型生态项目

此项目的间接生态系统丰富,每篇论文往往伴随着或指向外部的软件库、框架或工具,这些都是实际应用时间序列分析技术的关键。例如:

  • PyTorch Time Series Forecasting: 许多论文的实现可能会依赖于深度学习库,如PyTorch或TensorFlow,利用它们提供的高级API来构建模型。
  • Prophet: 虽然不在本仓库内,但像Facebook的Prophet这样的开源库也是时间序列预测中广受欢迎的选择,它展示了企业级应用的最佳实践。
  • MTNet, DF-Model, ESLSTM等: 这些模型的作者可能提供了实现代码,用于学习和进一步开发。

为了挖掘这些生态项目,推荐的做法是直接访问论文提到的代码仓库,或者探索与之相关的社区讨论和二次开发项目。


通过这个仓库,您不仅能够掌握时间序列分析领域的最新进展,还能激发新的灵感,推动自己的项目或研究向前发展。不断探索,持续学习,让我们一起在这个充满挑战与机遇的领域里前行!

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5