Cardano节点测试网(preprod)配置问题解析
在Cardano区块链生态系统中,测试网络(preprod)是开发者进行应用测试和功能验证的重要环境。近期有用户反馈在使用Docker部署Cardano节点连接preprod测试网时遇到了配置问题,本文将深入分析这一现象并提供解决方案。
问题现象
用户在Docker环境中使用inputoutput/cardano-node:1.35.5镜像部署Cardano节点时,容器无法正常启动,日志中反复出现"Managed configuration for network --testnet-magic 1 does not exist"的错误提示。尝试修改NETWORK环境变量为不同值(--testnet-magic 1或2)均未能解决问题。
原因分析
经过技术验证,发现该问题源于两个关键因素:
-
网络标识符变更:Cardano测试网(preprod)的网络标识符已从早期的"--testnet-magic 1"更新为简单的"preprod"。这是Cardano网络协议演进过程中的一项调整。
-
镜像版本兼容性:用户最初使用的1.35.5版本镜像可能不完全兼容最新的网络配置规范。虽然该版本理论上支持preprod网络,但需要正确的配置参数。
解决方案
要正确连接preprod测试网,应采用以下配置方式:
-
更新环境变量:将NETWORK环境变量值设置为"preprod"而非"--testnet-magic 1"。
-
使用推荐镜像:考虑使用官方推荐的更新版本镜像,如ghcr.io/intersectmbo/cardano-node:8.8.0-pre-test-sg-1。
-
完整配置示例:
version: '3.1'
services:
cardano-node:
image: ghcr.io/intersectmbo/cardano-node:8.8.0-pre-test-sg-1
environment:
- NETWORK=preprod
- CARDANO_NODE_SOCKET_PATH=/ipc/node.socket
volumes:
- ./cardano-node-ipc:/ipc
- ./cardano-node-data:/data
- ./configuration:/configuration
技术背景
Cardano测试网络经历了多次迭代更新,网络标识符的简化是为了提升开发者的使用体验。preprod网络作为主要的测试环境,其配置方式与主网(mainnet)保持了一致性,都采用简单的网络名称而非magic number。
对于开发者而言,理解这一变化有助于更顺畅地进行应用开发和测试。同时,保持对Cardano网络更新公告的关注,可以及时获取最新的配置要求变更信息。
总结
配置变更在区块链开发中较为常见,开发者需要定期检查官方文档以获取最新的网络参数。对于Cardano preprod测试网,使用"preprod"作为网络标识符是最新推荐的做法。通过正确的配置,开发者可以顺利建立与测试网的连接,进行各类智能合约和DApp的测试工作。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00