Relational RNN PyTorch 项目教程
2024-09-28 10:57:39作者:盛欣凯Ernestine
1. 项目目录结构及介绍
relational-rnn-pytorch/
├── data/
│ └── wikitext-2/
│ ├── train.txt
│ ├── valid.txt
│ └── test.txt
├── pics/
├── LICENSE
├── README.md
├── data.py
├── generate_rmc.py
├── generate_rnn.py
├── relational_rnn_general.py
├── relational_rnn_models.py
├── requirements.txt
├── rnn_models.py
├── train_embeddings.py
├── train_nth_farthest.py
├── train_rmc.py
└── train_rnn.py
目录结构介绍
- data/: 存放数据集的目录,默认包含
wikitext-2数据集的训练、验证和测试文件。 - pics/: 存放项目相关的图片文件。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍文档。
- data.py: 数据处理相关的脚本。
- generate_rmc.py: 用于生成基于 RMC(Relational Memory Core)模型的句子。
- generate_rnn.py: 用于生成基于传统 RNN 模型的句子。
- relational_rnn_general.py: 包含 RMC 模型的通用实现。
- relational_rnn_models.py: 包含 RMC 和传统 RNN 模型的具体实现。
- requirements.txt: 项目依赖的 Python 包列表。
- rnn_models.py: 传统 RNN 模型的实现。
- train_embeddings.py: 训练嵌入层的脚本。
- train_nth_farthest.py: 训练 Nth Farthest 任务的脚本。
- train_rmc.py: 训练 RMC 模型的脚本。
- train_rnn.py: 训练传统 RNN 模型的脚本。
2. 项目启动文件介绍
2.1 train_rmc.py
train_rmc.py 是用于训练 RMC 模型的启动文件。可以通过以下命令启动训练:
python train_rmc.py --cuda
该脚本支持 GPU 加速,并且可以通过 --adaptivesoftmax 和 --cutoffs 参数来优化大词汇量数据集的训练。
2.2 train_rnn.py
train_rnn.py 是用于训练传统 RNN 模型的启动文件。可以通过以下命令启动训练:
python train_rnn.py --cuda
该脚本同样支持 GPU 加速。
2.3 generate_rmc.py
generate_rmc.py 是用于生成基于 RMC 模型的句子的启动文件。可以通过以下命令生成句子:
python generate_rmc.py --cuda
2.4 generate_rnn.py
generate_rnn.py 是用于生成基于传统 RNN 模型的句子的启动文件。可以通过以下命令生成句子:
python generate_rnn.py --cuda
3. 项目的配置文件介绍
3.1 requirements.txt
requirements.txt 文件列出了项目运行所需的 Python 包及其版本。可以通过以下命令安装所有依赖:
pip install -r requirements.txt
3.2 data/wikitext-2/
data/wikitext-2/ 目录包含了 wikitext-2 数据集的训练、验证和测试文件。这些文件是训练和测试模型的基础数据。
3.3 LICENSE
LICENSE 文件包含了项目的开源许可证信息,通常是 Apache-2.0 许可证。
3.4 README.md
README.md 文件是项目的介绍文档,包含了项目的概述、安装说明、使用方法等信息。
通过以上介绍,您可以更好地理解和使用 relational-rnn-pytorch 项目。
登录后查看全文
热门项目推荐
暂无数据
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
540
3.77 K
Ascend Extension for PyTorch
Python
351
415
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
612
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141