YOLOv9项目中的训练模式选择与常见问题解析
2025-05-25 17:12:15作者:俞予舒Fleming
概述
YOLOv9作为目标检测领域的最新研究成果,在训练过程中提供了两种不同的训练脚本:train.py和train_dual.py。这两种训练模式对应着不同的网络架构和训练策略,开发者在使用过程中需要注意区分,否则可能会遇到各种错误。
两种训练模式的区别
YOLOv9项目中包含两种主要的训练方法:
- train.py:用于训练GELAN架构模型
- train_dual.py:用于训练完整的YOLOv9模型
这两种训练模式的主要区别在于网络结构的设计。YOLOv9模型在GELAN架构的基础上增加了辅助训练分支(aux branch),这种设计可以提升模型的训练效果。而GELAN模型则是YOLOv9的基础架构,不包含这些辅助训练组件。
常见错误及解决方案
在使用YOLOv9进行训练时,开发者可能会遇到以下典型错误:
-
'list'对象没有'view'属性错误:
- 原因:错误地使用train.py来训练YOLOv9模型
- 解决方案:对于YOLOv9模型必须使用train_dual.py进行训练
-
'list'对象没有'device'属性错误:
- 原因:在推理过程中使用了不兼容的代码
- 解决方案:确保使用正确的推理流程和模型加载方式
预训练权重选择建议
YOLOv9项目官方推荐使用从头训练(train-from-scratch)的策略,因此没有提供官方的预训练权重。如果开发者需要在特定数据集上进行微调,可以参考以下建议:
- 使用train_dual.py训练时,应选择yolov9-c.pt等YOLOv9系列的权重文件
- 对应的配置文件应选择yolov9-c.yaml等YOLOv9系列的配置文件
- 对于GELAN模型的训练,则应选择gelan-c.pt等GELAN系列的权重文件和对应的配置文件
最佳实践建议
-
明确训练目标:如果是研究YOLOv9的完整性能,应使用train_dual.py;如果只需要基础架构,可以使用train.py训练GELAN模型
-
配置文件匹配:确保权重文件与配置文件一一对应,yolov9系列模型使用yolov9配置文件,GELAN系列使用GELAN配置文件
-
训练策略:考虑到YOLOv9的设计优势,推荐优先使用train_dual.py进行训练,以获得更好的模型性能
通过理解这些关键差异和注意事项,开发者可以更高效地使用YOLOv9项目进行目标检测任务的训练和推理。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217