首页
/ Langchainrb项目中使用助手与向量数据库集成的实践指南

Langchainrb项目中使用助手与向量数据库集成的实践指南

2025-07-08 09:14:27作者:龚格成

在Langchainrb项目中,助手(Assistant)功能可以与向量数据库(Vector DB)进行集成,实现基于检索增强生成(RAG)的智能问答系统。本文将详细介绍如何实现这一集成方案,并分享实践中的经验与技巧。

核心集成方案

Langchainrb提供了一个Vectorsearch工具类,专门用于封装向量数据库操作。开发者可以通过以下步骤实现集成:

  1. 首先初始化LLM模型,用于文档嵌入和查询处理
  2. 创建向量数据库实例(如Chroma)
  3. 向数据库添加文档数据
  4. 创建Vectorsearch工具实例
  5. 配置助手时将该工具作为参数传入
# 初始化Ollama作为LLM
llm = Langchain::LLM::Ollama.new(url: ENV['OLLAMA_URL'])

# 创建Chroma向量数据库实例
chroma = Langchain::Vectorsearch::Chroma.new(
  url: ENV["CHROMA_URL"], 
  index_name: "docs", 
  llm: llm
)

# 添加文档数据
chroma.create_default_schema
chroma.add_data(paths: ["file1.pdf", "file2.pdf"])

# 创建Vectorsearch工具
vectorsearch_tool = Langchain::Tool::Vectorsearch.new(vectorsearch: chroma)

# 配置助手
assistant = Langchain::Assistant.new(
  llm: Langchain::LLM::OpenAI.new(api_key: ENV['OPENAI_API_KEY']),
  thread: Langchain::Thread.new,
  instructions: "你是一个帮助用户从Con Edison黄皮书中查找信息的聊天机器人...",
  tools: [vectorsearch_tool]
)

实践中的注意事项

  1. 工具命名问题:自定义工具类时,需要同时修改类名和NAME常量,否则可能导致冲突

  2. 多向量库场景:当需要根据查询内容访问不同的向量库时,可以创建多个Vectorsearch工具实例,每个实例对应不同的索引。但需要注意修改工具定义文件中的名称和描述,以便LLM能够正确区分

  3. 查询效果优化:直接使用向量数据库的ask方法可能比通过助手工具获得更稳定的结果。开发者可以根据实际需求选择实现方式

高级应用场景

对于需要根据查询上下文选择不同向量库的复杂场景,建议:

  1. 创建自定义工具类继承自Vectorsearch
  2. 为每个向量库创建独立的工具实例
  3. 在工具定义中提供清晰的区分描述
  4. 在助手指令中明确说明各工具的适用场景

这种架构既保持了灵活性,又能确保LLM能够正确理解和使用不同的向量库资源。

通过合理配置和优化,Langchainrb的助手功能可以很好地与各种向量数据库集成,构建出强大的智能问答系统。开发者应根据具体需求选择最适合的实现方案,并在实践中不断调整和优化。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
973
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133