PyTorch Vision项目对NumPy 2.0的兼容性进展
随着NumPy 2.0正式版即将在6月16日发布,PyTorch生态系统正在积极准备兼容性工作。作为PyTorch的重要组件,PyTorch Vision项目已经完成了大部分兼容性测试和修复工作。
NumPy 2.0带来了多项重要更新,包括API变更、性能改进和新功能。对于深度学习框架而言,确保与NumPy 2.0的兼容性尤为重要,因为NumPy是Python科学计算生态的基础依赖项。
PyTorch Vision团队通过系统性的测试发现,当前代码库中仅存在一处需要修改的兼容性问题。该问题涉及NumPy数组处理的一个特定场景,团队已经提交了修复补丁。在Linux平台上的持续集成测试表明,修复后的代码能够完美运行在NumPy 2.0环境下。
值得注意的是,PyTorch Vision项目本身并不直接依赖NumPy的C API,这简化了兼容性工作的复杂度。项目构建配置中也没有将NumPy列为构建依赖项,这意味着不会出现ABI兼容性问题。
虽然Windows平台的支持仍在进行中,但团队已经将其列为高优先级任务。PyTorch核心团队也在同步推进相关工作,确保整个PyTorch生态系统能够平滑过渡到NumPy 2.0。
对于终端用户而言,PyTorch Vision 0.19版本将提供完整的NumPy 2.0支持。用户升级到新版本NumPy后,可以继续无缝使用PyTorch Vision的各项功能。团队建议用户在NumPy 2.0正式发布后,及时更新PyTorch Vision到最新版本以获得最佳兼容性体验。
NumPy生态协调员对PyTorch Vision项目的积极响应表示赞赏,认为这种前瞻性的兼容性工作有助于整个Python科学计算生态的平稳升级。随着越来越多的项目完成NumPy 2.0适配,Python数据科学生态即将迎来一个更加高效的新时代。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00