PyTorch Vision项目对NumPy 2.0的兼容性进展
随着NumPy 2.0正式版即将在6月16日发布,PyTorch生态系统正在积极准备兼容性工作。作为PyTorch的重要组件,PyTorch Vision项目已经完成了大部分兼容性测试和修复工作。
NumPy 2.0带来了多项重要更新,包括API变更、性能改进和新功能。对于深度学习框架而言,确保与NumPy 2.0的兼容性尤为重要,因为NumPy是Python科学计算生态的基础依赖项。
PyTorch Vision团队通过系统性的测试发现,当前代码库中仅存在一处需要修改的兼容性问题。该问题涉及NumPy数组处理的一个特定场景,团队已经提交了修复补丁。在Linux平台上的持续集成测试表明,修复后的代码能够完美运行在NumPy 2.0环境下。
值得注意的是,PyTorch Vision项目本身并不直接依赖NumPy的C API,这简化了兼容性工作的复杂度。项目构建配置中也没有将NumPy列为构建依赖项,这意味着不会出现ABI兼容性问题。
虽然Windows平台的支持仍在进行中,但团队已经将其列为高优先级任务。PyTorch核心团队也在同步推进相关工作,确保整个PyTorch生态系统能够平滑过渡到NumPy 2.0。
对于终端用户而言,PyTorch Vision 0.19版本将提供完整的NumPy 2.0支持。用户升级到新版本NumPy后,可以继续无缝使用PyTorch Vision的各项功能。团队建议用户在NumPy 2.0正式发布后,及时更新PyTorch Vision到最新版本以获得最佳兼容性体验。
NumPy生态协调员对PyTorch Vision项目的积极响应表示赞赏,认为这种前瞻性的兼容性工作有助于整个Python科学计算生态的平稳升级。随着越来越多的项目完成NumPy 2.0适配,Python数据科学生态即将迎来一个更加高效的新时代。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00