Modin项目优化:利用Ray生成器提升分布式计算内存效率
2025-05-23 03:21:36作者:晏闻田Solitary
在分布式计算框架中,内存管理一直是影响性能的关键因素。近期Modin项目团队针对Ray执行引擎进行了重要优化,通过将远程函数返回值从列表改为生成器,显著降低了堆内存的使用压力。这一改进体现了现代Python分布式计算的优化思路。
背景与问题分析
Modin作为Pandas的分布式替代方案,其核心优势在于能够利用Ray等后端引擎实现数据的并行处理。在原有实现中,_deploy_ray_func远程函数直接返回完整的结果列表,这在处理大规模数据集时会导致两个明显问题:
- 所有结果数据需要一次性加载到内存
- 主节点需要等待所有分片计算完成才能继续后续操作
这种实现方式不仅增加了内存峰值使用量,还可能导致不必要的等待延迟。
生成器解决方案
Ray官方文档明确建议使用生成器模式来优化内存使用。生成器(Generator)作为Python的惰性求值机制,具有以下优势:
- 按需生成:数据只在被消费时才会计算和加载
- 内存友好:避免一次性保存所有中间结果
- 流水线处理:实现计算与消费的并行化
Modin团队将_deploy_ray_func的返回值从列表改为生成器后,系统现在可以:
- 边计算边传输结果
- 显著降低内存峰值使用量
- 提高整体任务吞吐量
技术实现要点
在实际改造中,需要注意几个关键技术点:
- 生成器链式调用:确保从底层计算到结果返回的整个调用链都采用生成器
- 异常处理:生成器场景下的错误传播机制需要特别设计
- 性能监控:需要验证生成器是否带来额外的CPU开销
对用户的影响
这一优化对Modin用户是透明的,但会带来以下实际好处:
- 能够处理更大的数据集(突破内存限制)
- 减少因内存不足导致的任务失败
- 提升整体系统的稳定性
未来展望
生成器模式的应用为Modin开辟了更多优化可能性:
- 可考虑在更多接口中应用惰性求值
- 结合Ray的对象存储进行更深度的内存优化
- 探索生成器与数据流水线的更佳组合方式
这次改进展示了Modin团队对性能优化的持续追求,也为分布式数据处理框架的设计提供了有价值的实践参考。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++095AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133