NCCL项目中NVLS内存占用问题的技术解析
2025-06-19 02:08:22作者:伍希望
概述
在NCCL 2.19.4版本中,用户在使用NVLS(NVLink Shared)功能时遇到了程序挂起的问题。经过深入分析发现,这实际上是由于GPU内存不足导致的,而非功能本身的缺陷。本文将详细解析NVLS功能的内存占用机制、问题根源以及NVIDIA官方的改进方向。
问题现象
当用户启用NCCL_NVLS_ENABLE=1参数时,程序会出现挂起现象。初步排查发现,这是由于NVLS功能需要额外占用大量GPU内存,而用户的模型在禁用NVLS时已经几乎占满了GPU内存,导致启用NVLS后出现内存不足的情况。
内存占用分析
测试数据显示,在不同规模的集群中,NVLS功能会带来不同程度的内存开销:
- 5节点12个NCCL通信:启用NVLS后,每个rank额外消耗约8GB内存
- 单节点和4节点测试:每个rank额外消耗约1.5GB内存
这表明NVLS的内存开销主要来自于节点内部的连接建立,而非跨节点连接。由于用户的硬件不支持跨节点NVLS,因此跨节点连接不会产生额外内存消耗。
技术原理
NVLS(NVLink Shared)是NCCL中利用NVLink高速互连技术实现的一种集体通信优化方式。它通过建立特殊的通信图来优化多GPU间的数据交换:
- 通信图结构:NVLS采用"头节点"模式,每个通道中第一个GPU负责收集归约数据并广播回其他GPU
- 内存消耗:NVLS需要为这些通信连接维护额外的数据结构,这是内存开销的主要来源
解决方案与未来改进
NVIDIA已经意识到NVLS内存占用过高的问题,并计划在后续版本中进行优化:
- NCCL 2.21版本:将显著减少NVLS内存使用量,预计在未来一个月内发布
- NCCL 2.22版本:将进一步优化内存使用,目标是使NVLS的内存开销接近禁用状态
用户建议
对于当前版本的用户,如果遇到类似问题,可以考虑以下方案:
- 暂时禁用NVLS功能(
NCCL_NVLS_ENABLE=0) - 减少模型规模或batch size,为NVLS预留足够内存
- 等待NCCL 2.21版本发布后再启用NVLS功能
总结
NVLS作为NCCL中利用NVLink技术的重要优化功能,虽然能提升通信效率,但在当前版本中存在较高的内存开销问题。NVIDIA已经着手解决这一问题,未来的版本将带来更好的内存效率。用户在使用时应根据自身硬件条件和模型特点,权衡性能与内存占用的关系,选择最适合的配置方案。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
650
149
Ascend Extension for PyTorch
Python
211
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216