深入剖析TencentBlueKing/bk-ci中插件流水线并发保存的数据一致性问题
2025-07-01 12:53:00作者:胡易黎Nicole
背景介绍
在持续集成系统TencentBlueKing/bk-ci中,插件与流水线之间存在着关联关系。系统需要准确记录每个插件被多少条流水线所引用,这个计数信息对于系统资源管理、插件生命周期控制等方面都具有重要意义。然而,在并发环境下,当多条流水线同时保存时,插件引用计数的计算可能会出现错误。
问题本质
这个问题的核心在于并发操作下的数据一致性问题。具体表现为:
- 当多个流水线同时保存时,如果这些流水线都引用了同一个插件
- 系统需要为这个插件的引用计数执行增加操作
- 在没有适当并发控制的情况下,多个并发的增加操作可能导致最终计数不准确
这种情况属于典型的"竞态条件"(Race Condition)问题,多个线程/进程同时访问和修改共享数据,导致最终结果取决于这些操作的相对执行时序。
技术分析
在数据库层面,这个问题可以抽象为一个经典的"读-修改-写"问题:
- 系统首先读取当前插件的引用计数(Read)
- 然后对这个计数进行增加操作(Modify)
- 最后将新值写回数据库(Write)
在没有并发控制的情况下,如果两个这样的操作序列同时执行,可能会出现:
- 线程A读取计数为10
- 线程B也读取计数为10
- 线程A增加1并写回11
- 线程B增加1并写回11
- 最终计数为11,而实际上应该为12
解决方案
针对这个问题,TencentBlueKing/bk-ci项目采用了加锁机制来保证并发保存时的数据计算准确性。具体实现思路包括:
- 悲观锁机制:在更新插件引用计数前,先获取相关记录的锁
- 事务隔离:确保在整个更新操作过程中保持数据一致性
- 细粒度锁:只锁定需要更新的插件记录,不影响系统其他部分的并发性能
这种解决方案虽然增加了少量的性能开销,但确保了数据的强一致性,对于计数准确性要求高的场景是必要的。
实现考量
在实际实现中,开发团队需要考虑以下因素:
- 锁的范围:需要精确控制锁的粒度,既保证数据一致性,又不过度影响系统并发性能
- 死锁预防:在多资源加锁场景下,需要设计合理的加锁顺序以避免死锁
- 性能影响:评估加锁对系统吞吐量的影响,必要时可以考虑优化措施
- 异常处理:确保在加锁失败或事务回滚时系统能够正确处理
经验总结
这个案例为我们提供了宝贵的分布式系统开发经验:
- 并发场景的普遍性:在现代分布式系统中,并发操作是常态而非例外
- 数据一致性的重要性:特别是对于关键业务数据,必须确保其准确性
- 解决方案的选择:需要根据业务特点选择最适合的并发控制策略
- 测试的必要性:并发问题往往难以在开发环境复现,需要专门的并发测试
通过这个问题的分析和解决,TencentBlueKing/bk-ci系统在数据一致性方面得到了进一步的加强,为后续的功能扩展和性能优化奠定了更坚实的基础。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.71 K
Ascend Extension for PyTorch
Python
328
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
577
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
135