TensorFlow Swift APIs 使用教程
1. 项目介绍
TensorFlow Swift APIs 是 TensorFlow 团队为 Swift 语言开发的一套深度学习库。它允许开发者使用 Swift 语言进行机器学习和深度学习模型的构建、训练和部署。TensorFlow Swift APIs 结合了 Swift 的简洁性和 TensorFlow 的强大功能,使得开发者能够更高效地进行深度学习开发。
2. 项目快速启动
安装依赖
首先,确保你已经安装了 Swift 工具链。然后,使用 swift package 命令来安装 TensorFlow Swift APIs。
git clone https://github.com/tensorflow/swift-apis.git
cd swift-apis
swift build
创建第一个模型
以下是一个简单的示例,展示如何使用 TensorFlow Swift APIs 创建一个简单的线性回归模型。
import TensorFlow
// 定义模型
struct LinearRegression: Layer {
var weight: Tensor<Float> = Tensor<Float>(randomNormal: [1, 1])
var bias: Tensor<Float> = Tensor<Float>(zeros: [1])
@differentiable
func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {
return matmul(input, weight) + bias
}
}
// 创建模型实例
var model = LinearRegression()
// 定义损失函数
let optimizer = SGD(for: model, learningRate: 0.02)
// 训练数据
let x: Tensor<Float> = [[1], [2], [3], [4]]
let y: Tensor<Float> = [[2], [4], [6], [8]]
// 训练模型
for epoch in 1...1000 {
let 𝛁model = model.gradient { model -> Tensor<Float> in
let ŷ = model(x)
let loss = meanSquaredError(predicted: ŷ, expected: y)
print("Epoch \(epoch): Loss: \(loss)")
return loss
}
optimizer.update(&model, along: 𝛁model)
}
// 预测
let testInput: Tensor<Float> = [[5], [6]]
let prediction = model(testInput)
print("Prediction: \(prediction)")
3. 应用案例和最佳实践
图像分类
TensorFlow Swift APIs 可以用于图像分类任务。以下是一个简单的图像分类示例,使用预训练的 ResNet 模型。
import TensorFlow
import Datasets
let dataset = CIFAR10()
var model = ResNet(classCount: 10)
let optimizer = SGD(for: model, learningRate: 0.001)
for epoch in 1...10 {
for batch in dataset.training.sequenced() {
let (images, labels) = batch
let 𝛁model = model.gradient { model -> Tensor<Float> in
let logits = model(images)
let loss = softmaxCrossEntropy(logits: logits, labels: labels)
print("Loss: \(loss)")
return loss
}
optimizer.update(&model, along: 𝛁model)
}
}
自然语言处理
TensorFlow Swift APIs 也可以用于自然语言处理任务,如文本分类。以下是一个简单的文本分类示例。
import TensorFlow
import TextModels
let dataset = SST()
var model = TextClassifier(classCount: 2)
let optimizer = Adam(for: model, learningRate: 0.001)
for epoch in 1...10 {
for batch in dataset.training.sequenced() {
let (texts, labels) = batch
let 𝛁model = model.gradient { model -> Tensor<Float> in
let logits = model(texts)
let loss = softmaxCrossEntropy(logits: logits, labels: labels)
print("Loss: \(loss)")
return loss
}
optimizer.update(&model, along: 𝛁model)
}
}
4. 典型生态项目
Swift for TensorFlow
Swift for TensorFlow 是一个开源项目,旨在为 Swift 语言提供强大的机器学习工具。它包括 TensorFlow Swift APIs、Swift 编译器优化以及与 TensorFlow 生态系统的深度集成。
TensorFlow Lite
TensorFlow Lite 是一个轻量级的深度学习库,适用于移动和嵌入式设备。TensorFlow Swift APIs 可以与 TensorFlow Lite 结合使用,将训练好的模型部署到移动设备上。
TensorBoard
TensorBoard 是一个可视化工具,用于监控和分析 TensorFlow 模型的训练过程。TensorFlow Swift APIs 支持 TensorBoard,可以帮助开发者更好地理解和优化模型。
通过这些模块,你可以快速上手 TensorFlow Swift APIs,并在实际项目中应用它们。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00