TensorFlow Swift APIs 使用教程
1. 项目介绍
TensorFlow Swift APIs 是 TensorFlow 团队为 Swift 语言开发的一套深度学习库。它允许开发者使用 Swift 语言进行机器学习和深度学习模型的构建、训练和部署。TensorFlow Swift APIs 结合了 Swift 的简洁性和 TensorFlow 的强大功能,使得开发者能够更高效地进行深度学习开发。
2. 项目快速启动
安装依赖
首先,确保你已经安装了 Swift 工具链。然后,使用 swift package 命令来安装 TensorFlow Swift APIs。
git clone https://github.com/tensorflow/swift-apis.git
cd swift-apis
swift build
创建第一个模型
以下是一个简单的示例,展示如何使用 TensorFlow Swift APIs 创建一个简单的线性回归模型。
import TensorFlow
// 定义模型
struct LinearRegression: Layer {
var weight: Tensor<Float> = Tensor<Float>(randomNormal: [1, 1])
var bias: Tensor<Float> = Tensor<Float>(zeros: [1])
@differentiable
func callAsFunction(_ input: Tensor<Float>) -> Tensor<Float> {
return matmul(input, weight) + bias
}
}
// 创建模型实例
var model = LinearRegression()
// 定义损失函数
let optimizer = SGD(for: model, learningRate: 0.02)
// 训练数据
let x: Tensor<Float> = [[1], [2], [3], [4]]
let y: Tensor<Float> = [[2], [4], [6], [8]]
// 训练模型
for epoch in 1...1000 {
let 𝛁model = model.gradient { model -> Tensor<Float> in
let ŷ = model(x)
let loss = meanSquaredError(predicted: ŷ, expected: y)
print("Epoch \(epoch): Loss: \(loss)")
return loss
}
optimizer.update(&model, along: 𝛁model)
}
// 预测
let testInput: Tensor<Float> = [[5], [6]]
let prediction = model(testInput)
print("Prediction: \(prediction)")
3. 应用案例和最佳实践
图像分类
TensorFlow Swift APIs 可以用于图像分类任务。以下是一个简单的图像分类示例,使用预训练的 ResNet 模型。
import TensorFlow
import Datasets
let dataset = CIFAR10()
var model = ResNet(classCount: 10)
let optimizer = SGD(for: model, learningRate: 0.001)
for epoch in 1...10 {
for batch in dataset.training.sequenced() {
let (images, labels) = batch
let 𝛁model = model.gradient { model -> Tensor<Float> in
let logits = model(images)
let loss = softmaxCrossEntropy(logits: logits, labels: labels)
print("Loss: \(loss)")
return loss
}
optimizer.update(&model, along: 𝛁model)
}
}
自然语言处理
TensorFlow Swift APIs 也可以用于自然语言处理任务,如文本分类。以下是一个简单的文本分类示例。
import TensorFlow
import TextModels
let dataset = SST()
var model = TextClassifier(classCount: 2)
let optimizer = Adam(for: model, learningRate: 0.001)
for epoch in 1...10 {
for batch in dataset.training.sequenced() {
let (texts, labels) = batch
let 𝛁model = model.gradient { model -> Tensor<Float> in
let logits = model(texts)
let loss = softmaxCrossEntropy(logits: logits, labels: labels)
print("Loss: \(loss)")
return loss
}
optimizer.update(&model, along: 𝛁model)
}
}
4. 典型生态项目
Swift for TensorFlow
Swift for TensorFlow 是一个开源项目,旨在为 Swift 语言提供强大的机器学习工具。它包括 TensorFlow Swift APIs、Swift 编译器优化以及与 TensorFlow 生态系统的深度集成。
TensorFlow Lite
TensorFlow Lite 是一个轻量级的深度学习库,适用于移动和嵌入式设备。TensorFlow Swift APIs 可以与 TensorFlow Lite 结合使用,将训练好的模型部署到移动设备上。
TensorBoard
TensorBoard 是一个可视化工具,用于监控和分析 TensorFlow 模型的训练过程。TensorFlow Swift APIs 支持 TensorBoard,可以帮助开发者更好地理解和优化模型。
通过这些模块,你可以快速上手 TensorFlow Swift APIs,并在实际项目中应用它们。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01