在ModelScope/SWIFT项目中优化Qwen2.5VL-3B模型GRPO训练的内存使用
2025-05-30 11:39:36作者:董灵辛Dennis
背景介绍
在大型视觉语言模型的训练过程中,内存优化是一个关键挑战。ModelScope/SWIFT项目中的GRPO(Grouped Reinforcement Policy Optimization)训练方法对显存需求较高,特别是当模型规模增大时。本文以Qwen2.5VL-3B模型为例,探讨如何有效优化其GRPO训练的内存使用。
内存使用问题分析
Qwen2.5VL-3B作为30亿参数的视觉语言模型,在GRPO训练时表现出显著高于InternVL3-2B模型的显存需求。具体表现为:
- 使用4张90GB显存的GPU仍会出现OOM(内存不足)错误
- 需要综合多种优化手段才能正常训练
- 相比20亿参数的InternVL3-2B模型,显存需求不成比例增长
这种现象主要源于:
- 模型参数规模增大带来的基础显存需求
- GRPO方法本身需要维护多个生成样本
- 视觉特征处理带来的额外显存开销
优化方案实施
经过实践验证,以下优化组合可有效解决Qwen2.5VL-3B的GRPO训练问题:
1. vLLM相关参数优化
--use_vllm true
--vllm_tensor_parallel_size 4 # 与GPU数量匹配
--vllm_gpu_memory_utilization 0.5 # 显存利用率限制
--sleep_level 1 # 控制计算节奏
--offload_optimizer true # 优化器状态卸载
--offload_model true # 模型参数卸载
--gc_collect_after_offload true # 卸载后垃圾回收
--vllm_limit_mm_per_prompt '{"image": 2}' # 限制每提示图像数量
2. 训练批次调整
--per_device_train_batch_size 2 # 大幅减少批次大小
3. 其他关键参数
--gradient_accumulation_steps 4 # 梯度累积补偿批次减少
--torch_dtype bfloat16 # 使用节省显存的数据类型
--deepspeed zero3 # 启用深度优化的ZeRO3策略
技术原理深入
这些优化手段背后的技术原理包括:
- vLLM内存管理:通过限制显存利用率和并行策略,防止单卡过载
- 模型卸载技术:将暂时不用的模型部分转移到CPU内存,减轻GPU压力
- 计算节奏控制:sleep_level参数调整计算间隔,避免瞬时内存峰值
- 混合精度训练:bfloat16在保持数值稳定性的同时减少显存占用
- ZeRO优化:深度优化的参数分区策略,减少冗余存储
实践建议
对于类似规模的视觉语言模型GRPO训练,建议:
- 从较小批次开始,逐步测试上限
- 优先尝试vLLM相关优化参数
- 监控训练过程中的显存波动
- 根据硬件配置调整并行策略
- 注意梯度累积步数与批次的平衡
总结
Qwen2.5VL-3B这类大型视觉语言模型的GRPO训练需要精心设计内存优化策略。通过综合运用vLLM优化、模型卸载、批次调整等技术手段,可以在有限硬件资源下实现稳定训练。这些经验也可推广到其他类似规模的多模态模型训练场景中。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
暂无简介
Dart
615
138
Ascend Extension for PyTorch
Python
165
184
React Native鸿蒙化仓库
JavaScript
240
314
仓颉编译器源码及 cjdb 调试工具。
C++
126
854
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
369
3.16 K
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
257
91
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
646
255