Elasticsearch日常运维操作指南:fdv/running-elasticsearch-fun-profit项目实践
2025-07-07 22:31:40作者:秋阔奎Evelyn
前言
Elasticsearch作为一款强大的分布式搜索和分析引擎,在生产环境中的运维工作至关重要。本文将基于fdv/running-elasticsearch-fun-profit项目中的运维经验,详细介绍Elasticsearch日常运维中的关键操作和实用技巧,帮助运维人员高效管理Elasticsearch集群。
批量索引操作
模式匹配批量删除索引
在实际运维中,经常需要根据特定模式批量删除索引。以下命令组合可以高效完成这一任务:
for index in $(curl -XGET esmaster:9200/_cat/indices | awk '/pattern/ {print $3}'); do
curl -XDELETE "localhost:9200/${index}?master_timeout=120s"
done
技术解析:
- 首先通过
_cat/indicesAPI获取所有索引列表 - 使用awk筛选出符合特定模式的索引名
- 循环调用DELETE API删除这些索引
- 设置
master_timeout参数避免超时问题
按删除文档数排序优化索引
Elasticsearch底层使用Lucene引擎,删除文档时只是标记而不会立即物理删除。优化(optimize)操作可以真正清理这些文档:
for indice in $(curl -XGET esmaster:9200/_cat/indices | sort -rk 7 | awk '{print $3}'); do
curl -XPOST "localhost:9200/${indice}/_optimize?max_num_segments=1"
done
优化建议:
- 此操作会消耗大量I/O,建议在业务低峰期执行
max_num_segments=1参数会将索引合并为单个段,提高查询效率- 排序确保先处理删除文档最多的索引,最大化优化效果
集群管理技巧
基于机架感知的集群重启
在大型集群中,利用机架感知特性可以安全重启集群:
# 第一步:临时禁用分片分配
curl -XPUT 'localhost:9200/_cluster/settings' -H 'Content-Type: application/json' -d '
{
"transient" : {
"cluster.routing.allocation.enable": "none"
}
}
'
# 第二步:按机架分批重启节点
for host in $(curl -XGET esmaster:9200/_cat/nodeattrs?attr | awk '/rack_id/ {print $2}'); do
ssh ${host} service elasticsearch restart
done
sleep 60 # 等待节点恢复
# 第三步:重新启用分片分配
curl -XPUT -H 'Content-Type: application/json' "localhost:9200/_cluster/settings" -d '
{
"transient" : {
"cluster.routing.allocation.enable": "all"
}
}
'
关键点:
- 禁用分配防止分片在重启期间迁移
- 按机架分批重启保证数据高可用性
- 适当sleep确保节点完全恢复
加速集群恢复配置
重启后应用以下配置可显著加快恢复速度:
curl -XPUT 'localhost:9200/_cluster/settings" -H 'Content-Type: application/json' -d '
{
"transient" : {
"cluster.routing.allocation.cluster_concurrent_rebalance": 20,
"indices.recovery.concurrent_streams": 20,
"cluster.routing.allocation.node_initial_primaries_recoveries": 20,
"cluster.routing.allocation.node_concurrent_recoveries": 20,
"indices.recovery.max_bytes_per_sec": "2048mb",
"cluster.routing.allocation.disk.threshold_enabled" : true,
"cluster.routing.allocation.disk.watermark.low" : "90%",
"cluster.routing.allocation.disk.watermark.high" : "98%",
"cluster.routing.allocation.enable": "primary"
}
}
'
参数说明:
concurrent_rebalance:控制集群范围内并发分片平衡数concurrent_streams:每个节点恢复时的并发流数max_bytes_per_sec:限制恢复带宽避免影响生产流量- 磁盘水位线设置防止节点磁盘写满
集群监控与诊断
节点关键指标监控
获取节点核心指标的简洁命令:
curl -XGET "localhost:9200/_cat/nodes?v&h=host,r,d,hc,rc,fdc,l"
输出字段:
- host:节点主机名
- r:节点角色(master/data)
- d:磁盘剩余空间
- hc:堆内存使用量
- rc:总内存使用量
- fdc:文件描述符使用数
- l:系统负载
搜索队列监控
实时监控搜索队列状态的脚本:
while true; do
curl -XGET "localhost:9200/_cat/thread_pool?v&h=host,search.queue,search.active,search.rejected,search.completed" | sort -unk 2,3
sleep 5
done
指标解读:
- search.queue:排队中的搜索请求数
- search.active:正在执行的搜索数
- search.rejected:被拒绝的搜索请求数
- 持续监控可发现性能瓶颈
分片与恢复状态
获取分片分配详情:
curl -XGET "localhost:9200/_cat/shards?v"
查看正在进行的恢复操作:
curl -XGET "localhost:9200/_recovery?pretty&active_only"
实用运维技巧
安全移除数据节点
优雅下线数据节点的正确方式:
curl -XPUT "localhost:9200/_cluster/settings" -H 'Content-Type: application/json' -d '
{
"transient" : {
"cluster.routing.allocation.exclude._ip" : "<data node 1>,<data node 2>,<data node x>"
}
}
'
最佳实践:
- 先排除节点IP,让分片迁移到其他节点
- 等待分片迁移完成(通过
_cat/shards确认) - 再停止该节点服务
索引元数据查询
获取索引映射:
curl -XGET "localhost:9200/someindice/_mapping"
查看索引设置:
curl -XGET "localhost:9200/someindice/_settings"
总结
本文介绍了Elasticsearch日常运维中的核心操作,包括批量索引管理、集群重启策略、性能调优参数和监控诊断方法。这些技巧源自fdv/running-elasticsearch-fun-profit项目的实战经验,可帮助运维人员更高效地管理Elasticsearch集群。建议根据实际环境调整参数值,并在变更前做好充分测试。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210