ntopng基础设施监控中HTTP RTT与吞吐量图表显示异常问题分析
在ntopng网络流量监控系统中,基础设施(Infrastructure)监控模块提供了一个关键功能——能够对各类服务实例进行主动监测。近期发现了一个值得注意的显示异常问题,该问题会影响用户对HTTP服务性能指标的准确观测。
问题现象
当用户向基础设施监控表中添加新实例时,系统会默认启用两项主动监测指标:
- HTTP往返时间(RTT)监测
- HTTP吞吐量(Throughput)监测
然而在实际使用中发现,当通过图表图标查看实例数据时,界面存在两个异常表现:
- 下拉菜单中同时显示"HTTP"和"RTT"两个选项
- 无论选择哪个选项,最终显示的图表内容都是延迟(即RTT)数据
这意味着用户无法通过界面正常查看HTTP吞吐量指标,严重影响了性能监控的完整性。
技术背景
ntopng的基础设施监控功能采用了一种智能的自动配置机制。对于HTTP类服务,系统会默认启用以下两组关键性能指标:
- 往返时间(RTT):反映网络请求从发出到收到响应所需的时间,是衡量服务响应速度的核心指标
- 吞吐量(Throughput):表示单位时间内成功传输的数据量,用于评估服务处理能力
这两项指标通常通过不同的时间序列数据库进行存储和查询,并在前端通过统一的数据可视化组件呈现。
问题根源
经过分析,该问题主要由两个因素导致:
-
前端组件配置错误:图表下拉菜单的选项绑定逻辑存在缺陷,未能正确区分RTT和Throughput两个指标系列
-
数据查询参数混淆:无论用户选择哪个选项,后端实际执行的查询都是针对RTT指标的,导致吞吐量数据无法正常获取
这种问题在监控系统中较为典型,通常源于前后端数据标识符的不一致或配置错误。
解决方案
针对此类显示异常,建议采取以下改进措施:
-
明确指标标识符:在前端组件中为每类指标使用唯一的标识符,避免命名冲突
-
完善数据查询验证:在后端API中添加查询参数验证,确保请求的指标类型与实际返回数据一致
-
增强默认配置检查:在系统自动配置监控项时,验证各项指标的数据采集和展示链路是否完整
用户影响
该问题修复后,用户将能够:
- 准确查看HTTP服务的RTT延迟数据
- 正常监控HTTP吞吐量指标
- 通过下拉菜单正确切换不同指标视图
这对于需要全面评估Web服务性能的运维人员尤为重要,使他们能够基于完整的数据做出更准确的判断。
最佳实践建议
为避免类似问题,建议用户在配置基础设施监控时:
- 添加实例后立即验证各项默认监控指标是否正常工作
- 定期检查监控图表的数据准确性
- 对关键业务服务考虑设置自定义监控项而非依赖默认配置
ntopng开发团队已确认该问题修复,用户升级到最新版本即可获得完整的监控功能体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01