Robust Laplacians Py: 创建高质量Laplace矩阵的最佳实践
2025-05-17 17:20:09作者:韦蓉瑛
1. 项目介绍
robust-laplacians-py 是一个Python包,用于在网格和点云上构建高质量的Laplace矩阵。Laplace矩阵在几何处理、仿真和机器学习等领域中扮演着核心角色。此库通过构建高质量的、鲁棒的Laplace矩阵,通常能改善这些算法的性能,并且提供了一个简单、单一功能的API封装。
2. 项目快速启动
首先,您需要安装robust-laplacians-py包。可以通过pip轻松安装:
pip install robust_laplacian
以下是一个构建点云Laplace矩阵的简单示例:
import robust_laplacian
import numpy as np
# 假设points是一个N x 3的numpy数组,包含点云的顶点位置
points = np.random.rand(100, 3)
# 构建点云Laplace矩阵
L, M = robust_laplacian.point_cloud_laplacian(points)
# 输出L和M的一些信息(例如,矩阵大小)
print(f"Laplace Matrix shape: {L.shape}")
print(f"Mass Matrix shape: {M.shape}")
3. 应用案例和最佳实践
构建网格Laplace矩阵
如果您有一个三角形网格,可以使用以下代码构建其Laplace矩阵:
# 假设verts是一个V x 3的numpy数组,包含网格的顶点位置
# faces是一个F x 3的numpy数组,包含网格的三角形面索引
verts = np.random.rand(50, 3)
faces = np.random.randint(0, 50, size=(30, 3))
# 构建网格Laplace矩阵
L, M = robust_laplacian.mesh_laplacian(verts, faces)
使用Laplace矩阵计算特征向量
Laplace矩阵的特征向量可以用于多种分析,以下是如何计算它们:
from scipy.sparse.linalg import eigsh
# 计算前10个特征向量
n_eig = 10
evals, evecs = eigsh(L, n_eig, M, sigma=1e-8)
# 输出特征值
print(evals)
可视化特征向量
使用polyscope库,您可以可视化Laplace矩阵的特征向量:
import polyscope as ps
# 初始化Polyscope
ps.init()
# 注册点云并添加标量量
ps_cloud = ps.register_point_cloud("my cloud", points)
for i in range(n_eig):
ps_cloud.add_scalar_quantity(f"eigenvector_{i}", evecs[:, i], enabled=True)
# 显示Polyscope窗口
ps.show()
4. 典型生态项目
robust-laplacians-py依赖于几个关键的开源项目,包括:
geometry-central: 提供核心算法实现的库。pybind11: 用于生成Python绑定的库。jc_voronoi: 用于点云的二维Delaunay三角剖分的库。
这些项目共同组成了一个强大的开源生态系统,支持着robust-laplacians-py的开发和使用。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
317
2.74 K
仓颉编译器源码及 cjdb 调试工具。
C++
124
852
Ascend Extension for PyTorch
Python
157
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
639
246
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
242
85
暂无简介
Dart
606
136
React Native鸿蒙化仓库
JavaScript
239
310
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
470
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
364
3.02 K