使用Supervision库实现YOLOv8目标跟踪与区域计数
2025-05-07 17:51:52作者:段琳惟
概述
在计算机视觉应用中,目标检测与跟踪是基础且重要的任务。本文将介绍如何利用Supervision库配合YOLOv8模型实现目标跟踪和区域计数功能,并解决在实际应用中遇到的常见问题。
环境准备
首先需要安装必要的Python库:
- Ultralytics YOLOv8:用于目标检测和跟踪
- Supervision:提供强大的视觉分析工具
- OpenCV:用于图像处理和显示
建议使用较新版本的Supervision库(如0.19.0),以避免兼容性问题。
核心实现步骤
1. 初始化检测区域
定义一个多边形区域作为检测区域,这里使用归一化坐标表示:
ZONE_POLYGON = np.array([
[0, 0],
[0.5, 0],
[0.5, 1],
[0, 1]
])
然后将这些归一化坐标转换为实际视频帧的像素坐标:
zone_polygon = (ZONE_POLYGON * np.array([frame_width, frame_height])).astype(int)
2. 创建区域检测器
使用Supervision的PolygonZone和PolygonZoneAnnotator来创建和可视化检测区域:
zone = sv.PolygonZone(polygon=zone_polygon, frame_resolution_wh=(frame_width, frame_height))
zone_annotator = sv.PolygonZoneAnnotator(
zone=zone,
color=sv.Color.RED,
thickness=2,
text_thickness=4,
text_scale=2
)
3. 加载YOLOv8模型并处理视频流
加载预训练的YOLOv8模型:
model = YOLO('yolov8n.pt')
然后处理视频流中的每一帧:
while cap.isOpened():
success, frame = cap.read()
if success:
results = model.track(frame, persist=True)
detections = sv.Detections.from_ultralytics(results[0])
4. 按类别过滤检测结果
可以通过检测结果的class_id属性来过滤特定类别的目标:
detections = detections[detections.class_id == 0] # 只保留类别ID为0的检测结果
5. 区域计数与可视化
统计进入区域的检测目标数量并可视化:
zone_triggered_detections = zone.trigger(detections=detections)
zone_detections_count += len(zone_triggered_detections)
annotated_frame = zone_annotator.annotate(scene=annotated_frame)
常见问题解决
1. NumPy兼容性问题
在使用较新版本的NumPy时,可能会遇到np.bool已被弃用的问题。解决方案是升级Supervision库到最新版本,因为它已经修复了这些兼容性问题。
2. 类别过滤的实现
在实际应用中,可能需要根据用户输入动态过滤特定类别的目标。可以通过GUI界面让用户选择感兴趣的类别,然后将对应的class_id传递给过滤逻辑。
3. 性能优化
对于实时应用,可以采取以下优化措施:
- 限制检测的类别范围,减少计算量
- 调整视频帧率或分辨率
- 使用更高效的模型版本(如YOLOv8s或YOLOv8n)
应用场景扩展
这种技术可以应用于多种场景:
- 交通流量监控:统计特定类型车辆通过某个区域的数量
- 零售分析:跟踪顾客在商店中的移动路径
- 安防监控:检测特定区域内的人员活动
总结
通过结合YOLOv8的目标检测能力和Supervision库的分析工具,可以高效地实现复杂的目标跟踪与区域计数功能。关键在于正确设置检测区域、合理过滤目标类别,并处理好视频流的实时处理。随着计算机视觉技术的发展,这类应用将变得更加广泛和智能化。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
197
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
311
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
845
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
693
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120