Xiaomi Vacuum Map Card 配置错误导致服务调用失败问题解析
在使用 Xiaomi Vacuum Map Card 项目时,用户可能会遇到"Service xiaomi_miio.vacuum_clean_segment not found"的错误提示。这个问题通常是由于卡片配置与实际的吸尘器集成不匹配造成的。
问题现象
当用户尝试使用地图卡片中的"前往指定位置"或"清洁指定房间"功能时,系统会报错显示找不到对应的服务。错误信息通常表现为:
- 服务调用失败
- xiaomi_miio.vacuum_clean_segment 服务不存在
- 操作 xiaomi_miio.vacuum_clean_segment 未找到
根本原因
该问题的核心在于卡片配置中的vacuum_platform参数设置不正确。在示例配置中,用户设置了vacuum_platform: Xiaomi Miio,但实际上使用的是Dreame Vacuum自定义集成。
解决方案
要解决这个问题,需要根据实际使用的吸尘器集成类型来正确配置vacuum_platform参数:
-
确认集成类型:首先需要确认在Home Assistant中实际使用的是哪种吸尘器集成。可以通过查看集成列表或实体信息来确定。
-
修改卡片配置:将
vacuum_platform参数修改为与实际集成匹配的值。对于Dreame Vacuum集成,正确的配置应该是:
vacuum_platform: Dreame
- 验证服务可用性:修改配置后,可以通过Home Assistant开发者工具中的服务选项卡验证相关服务是否可用。
配置建议
为了避免类似问题,建议在配置Xiaomi Vacuum Map Card时注意以下几点:
-
集成与平台匹配:确保卡片配置中的平台参数与实际使用的吸尘器集成完全一致。
-
服务验证:在配置前,先通过开发者工具测试相关服务是否能正常调用。
-
版本兼容性:检查卡片版本与吸尘器集成版本是否兼容,必要时更新到最新版本。
-
配置备份:修改配置前备份原有配置,以便出现问题时可以快速恢复。
总结
Xiaomi Vacuum Map Card是一个功能强大的地图控制卡片,但正确配置是确保其正常工作的关键。当遇到服务调用失败的问题时,首先应该检查平台配置是否正确,确保卡片配置与实际使用的吸尘器集成匹配。通过正确的配置,用户可以充分利用卡片提供的各种高级功能,如分区清洁、指定位置清洁等。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01