ScreenPipe项目Windows与Linux平台编译指南
2025-05-17 02:58:01作者:俞予舒Fleming
ScreenPipe作为一个开源的多媒体处理工具,其源代码编译过程需要开发者掌握一定的跨平台构建知识。本文将详细介绍在Windows和Linux两大主流操作系统上编译ScreenPipe项目的完整流程。
编译环境准备
基础依赖项
ScreenPipe项目编译需要以下核心组件:
- CMake(3.12或更高版本) - 跨平台构建系统
 - C++编译器:
- Windows: MSVC 2019或MinGW
 - Linux: GCC 9+或Clang 10+
 
 - Qt框架(5.15或更高版本) - 图形界面支持
 - FFmpeg库 - 多媒体处理核心
 
Windows环境配置
- 安装Visual Studio 2019/2022(包含C++工作负载)
 - 通过Qt官方安装器获取Qt 5.15+版本
 - 使用vcpkg管理第三方依赖:
vcpkg install ffmpeg opencv 
Linux环境配置
Ubuntu/Debian示例:
sudo apt install build-essential cmake qt5-default libavcodec-dev libavformat-dev libswscale-dev
源代码获取与配置
通过Git克隆最新代码:
git clone https://github.com/mediar-ai/screenpipe.git
cd screenpipe
编译流程详解
Windows平台编译
- 生成Visual Studio解决方案:
cmake -B build -G "Visual Studio 16 2019" -A x64 - 使用Visual Studio打开生成的.sln文件进行编译
 - 或使用命令行构建:
cmake --build build --config Release 
Linux平台编译
- 配置构建系统:
cmake -B build -DCMAKE_BUILD_TYPE=Release - 执行编译:
cmake --build build -j$(nproc) 
常见问题解决方案
- 
Qt路径问题: 通过设置
CMAKE_PREFIX_PATH指定Qt安装路径:cmake -B build -DCMAKE_PREFIX_PATH=/path/to/qt - 
FFmpeg链接错误: 确保开发包版本与运行时库一致,检查
pkg-config路径设置 - 
跨平台兼容性: 使用条件编译处理平台特定代码:
#ifdef _WIN32 // Windows特定实现 #else // Linux/Unix实现 #endif 
高级编译选项
ScreenPipe支持以下有用的CMake选项:
ENABLE_HWACCEL:启用硬件加速(默认ON)BUILD_TESTS:构建测试套件(默认OFF)USE_SYSTEM_FFMPEG:使用系统FFmpeg(默认OFF)
示例:
cmake -B build -DUSE_SYSTEM_FFMPEG=ON
部署注意事项
- 
Windows平台需要打包:
- Qt运行时库(Qt5Core.dll等)
 - FFmpeg动态库(avcodec-58.dll等)
 - VC++运行时
 
 - 
Linux平台可使用
make install安装到系统路径,或通过AppImage创建便携包 
通过掌握这些编译技术,开发者可以灵活地定制ScreenPipe功能,满足特定场景需求,也为后续的二次开发打下坚实基础。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
274
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
132
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
239
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
98
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
445