Django-Pandas 开源项目教程
项目介绍
Django-Pandas 是一个专为 Django 框架设计的扩展库,它提供了在 Django 模型上直接使用 pandas 进行数据处理的能力。这个工具极大地方便了数据分析、报表生成以及数据预处理等任务,使得开发者能够利用 pandas 强大的数据操作功能,而无需将数据频繁地从数据库中提取出来再导入到 pandas DataFrame 中。它支持便捷的数据转换、过滤、分析等功能,大大提升了开发效率。
项目快速启动
安装 Django-Pandas
首先确保你的环境中已经安装了 Django 和 pandas,然后通过 pip 安装 django-pandas:
pip install django-pandas
配置 Django 项目
在你的 Django settings.py 文件里,添加 'django_pandas' 到 INSTALLED_APPS:
INSTALLED_APPS = [
# ...
'django_pandas',
# ...
]
接着,在你打算使用的模型的应用中的 admin.py 文件内,集成 django-pandas 的功能。例如,假设有一个名为 MyModel 的模型,你可以这样做:
from django.contrib import admin
from django_pandas.admin import PDModelAdmin
from .models import MyModel
class MyModelAdmin(PDModelAdmin):
# 指定要转换成DataFrame的字段
pandas_extras = {
'df_fields': ('field1', 'field2'), # 替换为实际字段名
}
admin.site.register(MyModel, MyModelAdmin)
使用示例
现在,当你访问该模型的管理页面时,可以利用后台提供的额外功能进行数据分析了。
应用案例和最佳实践
在实际应用中,Django-Pandas 常用于快速生成基于现有模型数据的报表、执行复杂的数据筛选或统计分析。比如,你可以轻松地为模型数据计算平均值、计数或者进行任何 pandas 支持的数据操作,极大地简化了后端的数据处理逻辑。
from myapp.models import MyModel
# 获取模型数据的DataFrame
data_df = MyModel.objects.all().to_dataframe(['field1', 'field2'])
# 示例:计算 field1 的平均值
average_value = data_df['field1'].mean()
最佳实践建议定期清理不需要的大数据集,避免内存消耗过大,并且在处理大量数据时考虑异步处理或分批处理策略。
典型生态项目
虽然 Django-Pandas 本身专注于与 Django 框架的集成,但其在数据科学和Web应用结合领域开辟了一片天地。与其他数据可视化库如 Plotly Dash、Bokeh 或者与大数据处理框架(如 Apache Spark)相结合,可以构建出强大的数据分析和报告系统。例如,通过将处理后的 DataFrame 数据传递给前端图表库,实现动态数据展示,是常见的应用场景之一。
此教程仅为入门级概述,深入学习时应参考项目官方文档和社区分享的最佳实践,以充分利用 Django-Pandas 提供的功能。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00