vLLM项目中GLM-4-32B模型运行错误分析与解决方案
2025-05-01 10:09:13作者:凌朦慧Richard
问题背景
在使用vLLM项目运行GLM-4-32B-0414模型时,用户遇到了一个关键错误,导致进程被终止。该错误表现为在模型执行过程中出现了类型不匹配的问题,具体是PyTorch的线性层函数期望接收张量输入,但实际收到了元组类型。
错误分析
从错误日志中可以清晰地看到问题发生的调用链:
- 错误起源于
vllm/model_executor/models/llama.py第360行的forward方法 - 经过GLM4模型的特定处理层(
glm4.py第204行) - 最终在
vllm/model_executor/layers/linear.py中触发了类型错误
核心错误信息表明:"linear(): argument 'input' (position 1) must be Tensor, not tuple",这说明在模型的前向传播过程中,某个应该传入张量的地方错误地传入了元组。
根本原因
经过深入分析,这个问题与vLLM版本和GLM4模型实现之间的兼容性有关。具体表现为:
- 模型架构实现中的张量处理逻辑存在不一致
- 量化方法应用时对输入类型的检查不够严格
- 不同版本的vLLM对GLM4模型的支持程度不同
解决方案
针对这一问题,社区已经提供了有效的解决方法:
- 升级vLLM到0.8.4版本:新版本包含了针对GLM4模型的兼容性修复
- 替换最新的glm4.py实现:确保使用与vLLM 0.8.4兼容的模型实现文件
实施步骤
对于遇到相同问题的用户,可以按照以下步骤解决:
- 确认当前vLLM版本:
pip show vllm - 升级vLLM到0.8.4版本:
pip install vllm==0.8.4 --upgrade - 获取最新的glm4.py实现文件
- 替换原有文件(通常位于
vllm/model_executor/models/目录下) - 重新启动模型服务
技术细节
这个问题的本质在于PyTorch的动态图执行机制。当使用torch._dynamo进行图优化时,对输入类型的检查会更加严格。错误信息中提到的TORCH_LOGS="+dynamo"和TORCHDYNAMO_VERBOSE=1就是用于调试这类问题的工具。
虽然可以通过设置torch._dynamo.config.suppress_errors = True来抑制错误并回退到eager模式,但这只是临时解决方案,会影响性能。推荐使用前述的版本升级方案来从根本上解决问题。
总结
vLLM作为高性能LLM推理引擎,对不同模型架构的支持是一个持续优化的过程。GLM-4-32B作为大型语言模型,其实现细节与标准LLaMA架构存在差异,需要特定的兼容性处理。通过保持vLLM版本更新和使用最新的模型实现文件,可以确保获得最佳的性能和稳定性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
278
329
暂无简介
Dart
702
166
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111