Lit-GPT项目中继续微调已训练模型的技术解析
2025-05-19 15:53:03作者:段琳惟
在Lit-GPT项目中,开发者经常会遇到需要继续微调已训练模型的需求。本文将深入探讨这一技术实现方案及其原理。
技术背景
在大型语言模型的微调过程中,LoRA(Low-Rank Adaptation)是一种高效且资源友好的微调方法。它通过在原始模型参数旁添加低秩矩阵来实现微调,而不是直接修改原始的大规模参数。
继续微调的实现方案
对于已经使用LoRA进行过一轮微调的模型,Lit-GPT项目提供了继续微调的技术路径:
-
直接使用输出目录继续训练:可以将前一次LoRA训练的输出目录(
out_dir
)作为下一次训练的输入,系统会自动识别并加载已有的LoRA权重,在此基础上继续训练。 -
合并LoRA后的继续训练:如果先将LoRA权重合并到基础模型中(使用
merge_lora
),也可以基于合并后的模型进行新一轮的微调。这种方法适用于需要改变微调策略或参数的场景。
技术细节与注意事项
-
LoRA权重继承:直接使用输出目录继续训练时,系统会保持LoRA配置的一致性,包括秩(rank)等关键参数。
-
学习率调整:继续训练时,建议重新评估学习率设置,可能需要比初始训练更小的学习率以获得更好的微调效果。
-
检查点管理:Lit-GPT会自动管理训练检查点,确保在继续训练过程中不会丢失已有进展。
-
性能考量:相比从头开始训练,继续训练通常能节省大量计算资源,特别是当两次训练的数据分布相似时。
应用场景
这种继续微调的能力在实际应用中非常有用,例如:
-
当获得新数据时,可以在原有微调基础上继续训练,而无需从头开始。
-
分阶段训练策略,先在大规模通用数据上微调,再在特定领域数据上继续微调。
-
资源有限时,可以分多次完成完整的微调过程。
Lit-GPT项目的这一特性为研究人员和开发者提供了更大的灵活性,使得模型微调过程可以更加精细化和阶段化。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++096AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
59
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133