BentoML与Keras模型保存问题的解决方案
2025-05-29 08:35:54作者:袁立春Spencer
问题背景
在使用BentoML框架保存Keras模型时,开发者可能会遇到一个常见错误:ValueError提示"signatures"和"options"参数不被支持。这个问题通常出现在BentoML 1.2.9版本与Keras 3.1.1/TensorFlow 2.16.1组合使用时。
问题分析
当开发者尝试使用bentoml.keras.save_model()方法保存Keras模型时,框架内部会调用Keras的model.save()方法。但在某些版本组合下,BentoML会默认传递一些Keras当前版本不支持的参数(如signatures和options),导致保存失败。
解决方案
方案一:使用MLFlow作为中间层
目前最可靠的解决方案是采用MLFlow作为模型保存的中间层,然后再通过BentoML导入MLFlow模型:
- 设置MLFlow环境
import mlflow
mlflow.set_tracking_uri("your_mlflow_server_uri")
mlflow.set_experiment("your_experiment_name")
- 保存模型到MLFlow
with mlflow.start_run():
# 训练模型代码...
mlflow.keras.log_model(
model,
artifact_path="model_name",
registered_model_name="registered_name"
)
- 导入到BentoML
import bentoml
bentoml.mlflow.import_model(
"your_bento_model_name",
model_uri="mlflow_model_uri",
signatures={"predict": {"batchable": False}}
)
方案二:版本降级
如果必须直接使用Keras集成,可以尝试将BentoML降级到1.1.11版本,这个版本在某些场景下表现更稳定:
pip install bentoml==1.1.11
服务部署
模型成功保存后,可以创建BentoML服务:
from bentoml.io import JSON, Text
import pandas as pd
model_ref = bentoml.mlflow.get("your_model_name:latest")
runner = model_ref.to_runner()
svc = bentoml.Service(
name="your_service_name",
runners=[runner]
)
@svc.api(input=Text(), output=JSON())
async def predict(input_data):
# 处理输入数据
result = await runner.async_run(processed_data)
return {"result": result}
最佳实践建议
-
对于生产环境,推荐使用MLFlow作为模型管理中间件,它提供了更完善的模型版本控制和实验跟踪功能。
-
在模型开发阶段就考虑好部署需求,确保训练环境和部署环境的一致性。
-
对于复杂的自定义模型,可以通过custom_objects参数传递自定义层和指标函数。
-
定期检查BentoML和Keras/TensorFlow的版本兼容性,特别是大版本更新时。
通过上述方法,开发者可以绕过直接保存Keras模型时遇到的问题,同时获得更强大的模型管理能力。这种架构也使得模型从开发到部署的流程更加标准化和可维护。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1