BentoML与Keras模型保存问题的解决方案
2025-05-29 03:16:07作者:袁立春Spencer
问题背景
在使用BentoML框架保存Keras模型时,开发者可能会遇到一个常见错误:ValueError提示"signatures"和"options"参数不被支持。这个问题通常出现在BentoML 1.2.9版本与Keras 3.1.1/TensorFlow 2.16.1组合使用时。
问题分析
当开发者尝试使用bentoml.keras.save_model()方法保存Keras模型时,框架内部会调用Keras的model.save()方法。但在某些版本组合下,BentoML会默认传递一些Keras当前版本不支持的参数(如signatures和options),导致保存失败。
解决方案
方案一:使用MLFlow作为中间层
目前最可靠的解决方案是采用MLFlow作为模型保存的中间层,然后再通过BentoML导入MLFlow模型:
- 设置MLFlow环境
import mlflow
mlflow.set_tracking_uri("your_mlflow_server_uri")
mlflow.set_experiment("your_experiment_name")
- 保存模型到MLFlow
with mlflow.start_run():
# 训练模型代码...
mlflow.keras.log_model(
model,
artifact_path="model_name",
registered_model_name="registered_name"
)
- 导入到BentoML
import bentoml
bentoml.mlflow.import_model(
"your_bento_model_name",
model_uri="mlflow_model_uri",
signatures={"predict": {"batchable": False}}
)
方案二:版本降级
如果必须直接使用Keras集成,可以尝试将BentoML降级到1.1.11版本,这个版本在某些场景下表现更稳定:
pip install bentoml==1.1.11
服务部署
模型成功保存后,可以创建BentoML服务:
from bentoml.io import JSON, Text
import pandas as pd
model_ref = bentoml.mlflow.get("your_model_name:latest")
runner = model_ref.to_runner()
svc = bentoml.Service(
name="your_service_name",
runners=[runner]
)
@svc.api(input=Text(), output=JSON())
async def predict(input_data):
# 处理输入数据
result = await runner.async_run(processed_data)
return {"result": result}
最佳实践建议
-
对于生产环境,推荐使用MLFlow作为模型管理中间件,它提供了更完善的模型版本控制和实验跟踪功能。
-
在模型开发阶段就考虑好部署需求,确保训练环境和部署环境的一致性。
-
对于复杂的自定义模型,可以通过custom_objects参数传递自定义层和指标函数。
-
定期检查BentoML和Keras/TensorFlow的版本兼容性,特别是大版本更新时。
通过上述方法,开发者可以绕过直接保存Keras模型时遇到的问题,同时获得更强大的模型管理能力。这种架构也使得模型从开发到部署的流程更加标准化和可维护。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896