首页
/ DeepGEMM项目中张量内存布局选择的深度解析

DeepGEMM项目中张量内存布局选择的深度解析

2025-06-08 17:08:28作者:柯茵沙

背景介绍

在深度学习计算领域,矩阵乘法(GEMM)是最核心的计算操作之一。DeepGEMM作为一个专注于高效矩阵乘法实现的项目,其内存布局的选择直接影响着计算性能。本文将深入探讨DeepGEMM项目中为何选择列主序(col-major)而非行主序(row-major)的内存布局设计。

内存布局基础概念

在计算机科学中,多维数组在内存中的存储方式主要有两种:

  1. 行主序(row-major):同一行的元素在内存中连续存储
  2. 列主序(col-major):同一列的元素在内存中连续存储

以C/C++为代表的多数编程语言默认采用行主序,而Fortran等则采用列主序。在深度学习框架中,这两种布局都有广泛应用。

DeepGEMM的特殊考量

DeepGEMM项目在设计时选择列主序布局主要基于以下几个技术考量:

1. TMA(张量内存访问)的优化需求

TMA(Tensor Memory Access)是现代GPU架构中用于高效加载张量数据的机制。在DeepGEMM的实现中,每个计算阶段处理K维度上的128个元素(K_BLOCK_SIZE=128),这意味着:

  • 使用列主序时,TMA可以一次性读取连续的128个元素(512字节),实现高效的内存访问
  • 若采用行主序,TMA每次只能读取一个元素(4字节),导致内存访问效率极低

2. 计算模式的匹配

DeepGEMM的计算模式是沿着K维度进行分块处理。列主序布局使得在K维度上的访问是连续的,这与计算模式完美匹配:

  • 每个计算阶段只需要读取K方向的一个缩放因子(scale)
  • 列主序保证了这些缩放因子在内存中的连续存储
  • 这种布局减少了内存访问次数,提高了缓存命中率

3. 硬件特性利用

现代GPU架构对内存访问模式有严格要求:

  • 合并内存访问(Coalesced Memory Access)要求同一warp内的线程访问连续内存地址
  • 列主序布局在K维度上的连续访问更符合这一要求
  • 这种布局可以最大化利用GPU的内存带宽

实现细节

在具体实现上,DeepGEMM通过以下方式确保内存布局的正确性:

  1. 对输入张量进行显式的列主序排列
  2. 对缩放因子(scale)进行特殊处理:
    • 左侧(LHS)缩放因子需要转置以满足TMA加载要求
    • 右侧(RHS)缩放因子则不需要转置
  3. 必要时进行内存填充(padding)以保证对齐要求

性能对比

虽然行主序布局在K维度的对齐处理上看似更简单,但实际性能测试表明:

  • 列主序布局在DeepGEMM的特定计算模式下可获得显著更高的内存带宽利用率
  • 在K_BLOCK_SIZE=128的配置下,列主序的吞吐量是行主序的数十倍
  • 这种优势在更大规模的计算中更为明显

结论

DeepGEMM项目选择列主序内存布局是基于其特定计算模式和现代GPU架构特性的深思熟虑的结果。这种设计虽然在某些情况下增加了实现的复杂性,但换来了显著的内存访问效率提升,最终带来了整体性能的优化。这也启示我们,在深度学习系统设计中,内存布局的选择需要紧密结合计算模式和硬件特性,不能简单地遵循传统惯例。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
154
1.98 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
941
555
HarmonyOS-ExamplesHarmonyOS-Examples
本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
405
387
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
510
44
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.32 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
194
279