DeepGEMM项目中张量内存布局选择的深度解析
2025-06-08 02:10:01作者:柯茵沙
背景介绍
在深度学习计算领域,矩阵乘法(GEMM)是最核心的计算操作之一。DeepGEMM作为一个专注于高效矩阵乘法实现的项目,其内存布局的选择直接影响着计算性能。本文将深入探讨DeepGEMM项目中为何选择列主序(col-major)而非行主序(row-major)的内存布局设计。
内存布局基础概念
在计算机科学中,多维数组在内存中的存储方式主要有两种:
- 行主序(row-major):同一行的元素在内存中连续存储
- 列主序(col-major):同一列的元素在内存中连续存储
以C/C++为代表的多数编程语言默认采用行主序,而Fortran等则采用列主序。在深度学习框架中,这两种布局都有广泛应用。
DeepGEMM的特殊考量
DeepGEMM项目在设计时选择列主序布局主要基于以下几个技术考量:
1. TMA(张量内存访问)的优化需求
TMA(Tensor Memory Access)是现代GPU架构中用于高效加载张量数据的机制。在DeepGEMM的实现中,每个计算阶段处理K维度上的128个元素(K_BLOCK_SIZE=128),这意味着:
- 使用列主序时,TMA可以一次性读取连续的128个元素(512字节),实现高效的内存访问
- 若采用行主序,TMA每次只能读取一个元素(4字节),导致内存访问效率极低
2. 计算模式的匹配
DeepGEMM的计算模式是沿着K维度进行分块处理。列主序布局使得在K维度上的访问是连续的,这与计算模式完美匹配:
- 每个计算阶段只需要读取K方向的一个缩放因子(scale)
- 列主序保证了这些缩放因子在内存中的连续存储
- 这种布局减少了内存访问次数,提高了缓存命中率
3. 硬件特性利用
现代GPU架构对内存访问模式有严格要求:
- 合并内存访问(Coalesced Memory Access)要求同一warp内的线程访问连续内存地址
- 列主序布局在K维度上的连续访问更符合这一要求
- 这种布局可以最大化利用GPU的内存带宽
实现细节
在具体实现上,DeepGEMM通过以下方式确保内存布局的正确性:
- 对输入张量进行显式的列主序排列
- 对缩放因子(scale)进行特殊处理:
- 左侧(LHS)缩放因子需要转置以满足TMA加载要求
- 右侧(RHS)缩放因子则不需要转置
- 必要时进行内存填充(padding)以保证对齐要求
性能对比
虽然行主序布局在K维度的对齐处理上看似更简单,但实际性能测试表明:
- 列主序布局在DeepGEMM的特定计算模式下可获得显著更高的内存带宽利用率
- 在K_BLOCK_SIZE=128的配置下,列主序的吞吐量是行主序的数十倍
- 这种优势在更大规模的计算中更为明显
结论
DeepGEMM项目选择列主序内存布局是基于其特定计算模式和现代GPU架构特性的深思熟虑的结果。这种设计虽然在某些情况下增加了实现的复杂性,但换来了显著的内存访问效率提升,最终带来了整体性能的优化。这也启示我们,在深度学习系统设计中,内存布局的选择需要紧密结合计算模式和硬件特性,不能简单地遵循传统惯例。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 JavaWeb企业门户网站源码 - 企业级门户系统开发指南 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 全球GEOJSON地理数据资源下载指南 - 高效获取地理空间数据的完整解决方案
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
987
583

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.42 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
212
287