DeepGEMM项目中张量内存布局选择的深度解析
2025-06-08 07:41:34作者:柯茵沙
背景介绍
在深度学习计算领域,矩阵乘法(GEMM)是最核心的计算操作之一。DeepGEMM作为一个专注于高效矩阵乘法实现的项目,其内存布局的选择直接影响着计算性能。本文将深入探讨DeepGEMM项目中为何选择列主序(col-major)而非行主序(row-major)的内存布局设计。
内存布局基础概念
在计算机科学中,多维数组在内存中的存储方式主要有两种:
- 行主序(row-major):同一行的元素在内存中连续存储
- 列主序(col-major):同一列的元素在内存中连续存储
以C/C++为代表的多数编程语言默认采用行主序,而Fortran等则采用列主序。在深度学习框架中,这两种布局都有广泛应用。
DeepGEMM的特殊考量
DeepGEMM项目在设计时选择列主序布局主要基于以下几个技术考量:
1. TMA(张量内存访问)的优化需求
TMA(Tensor Memory Access)是现代GPU架构中用于高效加载张量数据的机制。在DeepGEMM的实现中,每个计算阶段处理K维度上的128个元素(K_BLOCK_SIZE=128),这意味着:
- 使用列主序时,TMA可以一次性读取连续的128个元素(512字节),实现高效的内存访问
- 若采用行主序,TMA每次只能读取一个元素(4字节),导致内存访问效率极低
2. 计算模式的匹配
DeepGEMM的计算模式是沿着K维度进行分块处理。列主序布局使得在K维度上的访问是连续的,这与计算模式完美匹配:
- 每个计算阶段只需要读取K方向的一个缩放因子(scale)
- 列主序保证了这些缩放因子在内存中的连续存储
- 这种布局减少了内存访问次数,提高了缓存命中率
3. 硬件特性利用
现代GPU架构对内存访问模式有严格要求:
- 合并内存访问(Coalesced Memory Access)要求同一warp内的线程访问连续内存地址
- 列主序布局在K维度上的连续访问更符合这一要求
- 这种布局可以最大化利用GPU的内存带宽
实现细节
在具体实现上,DeepGEMM通过以下方式确保内存布局的正确性:
- 对输入张量进行显式的列主序排列
- 对缩放因子(scale)进行特殊处理:
- 左侧(LHS)缩放因子需要转置以满足TMA加载要求
- 右侧(RHS)缩放因子则不需要转置
- 必要时进行内存填充(padding)以保证对齐要求
性能对比
虽然行主序布局在K维度的对齐处理上看似更简单,但实际性能测试表明:
- 列主序布局在DeepGEMM的特定计算模式下可获得显著更高的内存带宽利用率
- 在K_BLOCK_SIZE=128的配置下,列主序的吞吐量是行主序的数十倍
- 这种优势在更大规模的计算中更为明显
结论
DeepGEMM项目选择列主序内存布局是基于其特定计算模式和现代GPU架构特性的深思熟虑的结果。这种设计虽然在某些情况下增加了实现的复杂性,但换来了显著的内存访问效率提升,最终带来了整体性能的优化。这也启示我们,在深度学习系统设计中,内存布局的选择需要紧密结合计算模式和硬件特性,不能简单地遵循传统惯例。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
420
3.22 K
Ascend Extension for PyTorch
Python
230
261
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
330
暂无简介
Dart
685
160
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
666
仓颉编译器源码及 cjdb 调试工具。
C++
136
869