DeepGEMM项目中张量内存布局选择的深度解析
2025-06-08 16:12:50作者:柯茵沙
背景介绍
在深度学习计算领域,矩阵乘法(GEMM)是最核心的计算操作之一。DeepGEMM作为一个专注于高效矩阵乘法实现的项目,其内存布局的选择直接影响着计算性能。本文将深入探讨DeepGEMM项目中为何选择列主序(col-major)而非行主序(row-major)的内存布局设计。
内存布局基础概念
在计算机科学中,多维数组在内存中的存储方式主要有两种:
- 行主序(row-major):同一行的元素在内存中连续存储
- 列主序(col-major):同一列的元素在内存中连续存储
以C/C++为代表的多数编程语言默认采用行主序,而Fortran等则采用列主序。在深度学习框架中,这两种布局都有广泛应用。
DeepGEMM的特殊考量
DeepGEMM项目在设计时选择列主序布局主要基于以下几个技术考量:
1. TMA(张量内存访问)的优化需求
TMA(Tensor Memory Access)是现代GPU架构中用于高效加载张量数据的机制。在DeepGEMM的实现中,每个计算阶段处理K维度上的128个元素(K_BLOCK_SIZE=128),这意味着:
- 使用列主序时,TMA可以一次性读取连续的128个元素(512字节),实现高效的内存访问
- 若采用行主序,TMA每次只能读取一个元素(4字节),导致内存访问效率极低
2. 计算模式的匹配
DeepGEMM的计算模式是沿着K维度进行分块处理。列主序布局使得在K维度上的访问是连续的,这与计算模式完美匹配:
- 每个计算阶段只需要读取K方向的一个缩放因子(scale)
- 列主序保证了这些缩放因子在内存中的连续存储
- 这种布局减少了内存访问次数,提高了缓存命中率
3. 硬件特性利用
现代GPU架构对内存访问模式有严格要求:
- 合并内存访问(Coalesced Memory Access)要求同一warp内的线程访问连续内存地址
- 列主序布局在K维度上的连续访问更符合这一要求
- 这种布局可以最大化利用GPU的内存带宽
实现细节
在具体实现上,DeepGEMM通过以下方式确保内存布局的正确性:
- 对输入张量进行显式的列主序排列
- 对缩放因子(scale)进行特殊处理:
- 左侧(LHS)缩放因子需要转置以满足TMA加载要求
- 右侧(RHS)缩放因子则不需要转置
- 必要时进行内存填充(padding)以保证对齐要求
性能对比
虽然行主序布局在K维度的对齐处理上看似更简单,但实际性能测试表明:
- 列主序布局在DeepGEMM的特定计算模式下可获得显著更高的内存带宽利用率
- 在K_BLOCK_SIZE=128的配置下,列主序的吞吐量是行主序的数十倍
- 这种优势在更大规模的计算中更为明显
结论
DeepGEMM项目选择列主序内存布局是基于其特定计算模式和现代GPU架构特性的深思熟虑的结果。这种设计虽然在某些情况下增加了实现的复杂性,但换来了显著的内存访问效率提升,最终带来了整体性能的优化。这也启示我们,在深度学习系统设计中,内存布局的选择需要紧密结合计算模式和硬件特性,不能简单地遵循传统惯例。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
291
2.62 K
Ascend Extension for PyTorch
Python
123
149
暂无简介
Dart
583
127
React Native鸿蒙化仓库
JavaScript
227
306
仓颉编译器源码及 cjdb 调试工具。
C++
121
395
仓颉编程语言运行时与标准库。
Cangjie
130
408
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
openGauss kernel ~ openGauss is an open source relational database management system
C++
155
205