多标准中文分词项目教程
2024-09-18 18:57:13作者:裘旻烁
1、项目介绍
multi-criteria-cws
是一个用于多标准中文分词的开源项目,由 hankcs 开发并维护。该项目基于神经网络方法,旨在提供一种高效的多标准中文分词解决方案。项目代码和语料库是为论文《Effective Neural Solution for Multi-Criteria Word Segmentation》(已被 SCI-2018 接受并即将发表)开发的。
该项目的主要功能包括:
- 读取数据集并将其转换为实例列表。
- 修改
w2i
、t2i
和c2i
字典,添加新的单词、属性、标签和字符。 - 提供训练和测试脚本,支持多种数据集。
2、项目快速启动
环境准备
- Python 3
- Dynet 库
快速启动步骤
-
克隆项目
git clone https://github.com/hankcs/multi-criteria-cws.git cd multi-criteria-cws
-
准备数据集
python3 convert_corpus.py
-
转换数据集为 pickle 文件
./script/make.sh $dataset
其中
$dataset
可以是以下数据集之一:pku
、msr
、as
、cityu
、sxu
、ctb
、zx
、cnc
、udc
和wtb
。也可以是联合数据集,如joint-sighan2005
或joint-10in1
。 -
训练和测试
./script/train.sh $dataset
3、应用案例和最佳实践
应用案例
- 学术研究:该项目可用于中文自然语言处理领域的学术研究,特别是中文分词的多标准问题。
- 工业应用:在需要处理中文文本的工业应用中,如搜索引擎、机器翻译等,该项目可以提供高效的分词解决方案。
最佳实践
- 数据集选择:根据具体需求选择合适的数据集进行训练和测试。
- 模型调优:通过调整模型参数和训练策略,优化分词效果。
4、典型生态项目
- HanLP:一个开源的中文自然语言处理工具包,包含多种中文处理功能,如分词、词性标注、命名实体识别等。
- Dynet:一个轻量级的神经网络库,支持多种神经网络模型的构建和训练。
通过结合这些生态项目,可以进一步扩展和优化 multi-criteria-cws
的功能和性能。
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
828
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
markdown4cj
一个markdown解析和展示的库
Cangjie
10
1