Wazuh 4.12.0 Alpha 1 中 Amazon CloudWatch Logs 集成测试报告
测试环境搭建
本次测试基于 Wazuh 4.12.0 Alpha 1 版本,构建了一个完整的端到端安全监控系统。测试环境采用 Ubuntu 24.04 LTS 作为服务器平台,部署了 Wazuh 的核心组件(Indexer、Server 和 Dashboard),同时配置了 Fedora 40/41 系统的代理节点。
服务器端硬件配置为 AMD EPYC 7R32 处理器,4 核 CPU,7.6GB 内存和 29GB 存储空间。代理节点则分别测试了 x86_64 和 aarch64 两种架构,确保跨平台兼容性。
安装与配置过程
Wazuh 核心组件通过官方提供的安装脚本一键部署,特别值得注意的是,在预发布版本测试中需要使用特定的参数来指定预发布仓库。代理节点的安装则根据操作系统类型选择对应的安装方式,Fedora 系统推荐使用 yum 仓库安装。
在配置 Amazon CloudWatch Logs 集成时,需要特别注意以下几点:
- 必须预先配置 AWS 凭证文件,包含有效的访问密钥和密钥 ID
- 需要安装 Python 3 及相关依赖包(boto3、pyarrow、numpy)
- 配置文件需明确指定 AWS 日志组和区域信息
CloudWatch 集成测试
测试主要验证了两种 AWS 日志组的集成情况:
/aws/lambda/Scan-Findings-Logger- 条目较少的日志组/aws/lambda/ec2-instance-autodeletion- 条目较多的日志组
测试发现,当日志组包含大量条目时,处理时间会显著增加。通过配置 only_logs_after 参数可以限制获取日志的时间范围,但需要注意该参数仅影响后续处理,不会减少初始获取的数据量。
高级功能验证
测试重点验证了 discard_regex 功能的使用效果。通过在配置中添加如下的过滤规则:
<discard_regex field="eventSource">.*ec2:DescribeInstances.*</discard_regex>
可以有效地过滤掉包含特定模式的事件。测试结果表明该功能工作正常,能够按预期丢弃匹配指定正则表达式的日志条目。
跨平台兼容性测试
测试覆盖了不同架构的代理节点:
- Fedora 40 x86_64
- Fedora 41 aarch64
测试发现当前 AWS 官方镜像库中缺少 Fedora 40 aarch64 的镜像,这是一个需要注意的兼容性问题。在其他测试平台上,CloudWatch 日志收集功能均表现正常。
性能观察与优化建议
在处理大型日志组时,系统表现出以下特点:
- 初始同步可能需要较长时间(观察到最长3小时)
- 内存占用相对稳定
- 后续增量同步效率较高
针对性能优化,建议:
- 合理设置
only_logs_after参数限制时间范围 - 对于生产环境,考虑使用较小的日志组或增加同步间隔
- 监控系统资源使用情况,必要时扩展硬件配置
总结
Wazuh 4.12.0 Alpha 1 中的 Amazon CloudWatch Logs 集成功能整体表现稳定,能够有效地收集和处理 AWS 环境中的日志数据。跨平台支持良好,高级过滤功能工作正常。对于大型日志组的处理效率问题,可以通过合理配置参数来优化。
建议用户在实际部署时,根据自身环境特点调整配置参数,并密切关注系统资源使用情况,以获得最佳的使用体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00