MNN框架中ConvTranspose算子内存占用优化分析
2025-05-22 14:31:40作者:郦嵘贵Just
问题背景
在MNN深度学习推理框架(2.9.0版本)中,用户在使用CPU进行浮点32位推理时,发现ConvTranspose(转置卷积)算子存在内存占用过大的问题。该问题在X86和ARMv7a架构上均有出现,且设置低内存模式(low memory)未能有效缓解。
问题现象
从用户提供的示意图可以看出,ConvTranspose算子在执行过程中产生了异常高的内存占用峰值,这可能导致在资源受限的设备上出现内存不足的情况,影响模型的部署和推理效率。
技术分析
ConvTranspose算子(也称为反卷积或转置卷积)是卷积神经网络中常用的上采样操作,常用于图像分割、超分辨率等任务。其内存占用问题主要源于以下几个技术点:
- 计算特性:转置卷积需要保存中间特征图和卷积核的展开矩阵,这些临时变量的尺寸通常较大
- 实现方式:传统实现往往采用显式展开方式,导致内存消耗与卷积核尺寸呈平方关系
- 多线程处理:并行计算时需要为每个线程分配独立的工作空间,进一步增加了内存压力
优化方案
MNN开发团队针对此问题进行了深入优化:
- 单线程优化:通过算法改进,将内存占用从原来的
kernelsize * kernelsize * featuremap降低到更高效的水平 - 多线程处理:虽然多线程仍会带来额外内存开销,但优化后仅为
(n-1)*featuremap,其中n为线程数 - 线程数控制:建议合理设置线程数量,避免过高的线程数导致内存消耗过大
优化效果
该优化已在MNN 3.0.2版本中同步发布。相比优化前:
- 单线程情况下内存占用显著降低
- 多线程情况下内存增长幅度可控,只要线程数设置合理,总体内存消耗仍低于优化前水平
使用建议
对于使用MNN框架进行模型部署的开发者:
- 建议升级到3.0.2或更高版本以获得内存优化
- 根据目标设备的资源情况合理配置线程数
- 对于内存特别敏感的场景,可以考虑牺牲部分性能换取更低的内存占用
总结
MNN框架对ConvTranspose算子的内存优化体现了深度学习推理框架在资源效率方面的持续改进。这种优化对于边缘计算和移动端部署尤为重要,使得更大、更复杂的模型能够在资源受限的设备上高效运行。开发者应及时关注框架更新,以获得最佳的性能和资源利用率。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.87 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
310
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1