MNN框架中ConvTranspose算子内存占用优化分析
2025-05-22 03:34:10作者:郦嵘贵Just
问题背景
在MNN深度学习推理框架(2.9.0版本)中,用户在使用CPU进行浮点32位推理时,发现ConvTranspose(转置卷积)算子存在内存占用过大的问题。该问题在X86和ARMv7a架构上均有出现,且设置低内存模式(low memory)未能有效缓解。
问题现象
从用户提供的示意图可以看出,ConvTranspose算子在执行过程中产生了异常高的内存占用峰值,这可能导致在资源受限的设备上出现内存不足的情况,影响模型的部署和推理效率。
技术分析
ConvTranspose算子(也称为反卷积或转置卷积)是卷积神经网络中常用的上采样操作,常用于图像分割、超分辨率等任务。其内存占用问题主要源于以下几个技术点:
- 计算特性:转置卷积需要保存中间特征图和卷积核的展开矩阵,这些临时变量的尺寸通常较大
- 实现方式:传统实现往往采用显式展开方式,导致内存消耗与卷积核尺寸呈平方关系
- 多线程处理:并行计算时需要为每个线程分配独立的工作空间,进一步增加了内存压力
优化方案
MNN开发团队针对此问题进行了深入优化:
- 单线程优化:通过算法改进,将内存占用从原来的
kernelsize * kernelsize * featuremap
降低到更高效的水平 - 多线程处理:虽然多线程仍会带来额外内存开销,但优化后仅为
(n-1)*featuremap
,其中n为线程数 - 线程数控制:建议合理设置线程数量,避免过高的线程数导致内存消耗过大
优化效果
该优化已在MNN 3.0.2版本中同步发布。相比优化前:
- 单线程情况下内存占用显著降低
- 多线程情况下内存增长幅度可控,只要线程数设置合理,总体内存消耗仍低于优化前水平
使用建议
对于使用MNN框架进行模型部署的开发者:
- 建议升级到3.0.2或更高版本以获得内存优化
- 根据目标设备的资源情况合理配置线程数
- 对于内存特别敏感的场景,可以考虑牺牲部分性能换取更低的内存占用
总结
MNN框架对ConvTranspose算子的内存优化体现了深度学习推理框架在资源效率方面的持续改进。这种优化对于边缘计算和移动端部署尤为重要,使得更大、更复杂的模型能够在资源受限的设备上高效运行。开发者应及时关注框架更新,以获得最佳的性能和资源利用率。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0118AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
225
2.27 K

React Native鸿蒙化仓库
JavaScript
211
287

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
986
583

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
43
0

ArkUI-X adaptation to Android | ArkUI-X支持Android平台的适配层
C++
39
55

ArkUI-X adaptation to iOS | ArkUI-X支持iOS平台的适配层
Objective-C++
19
44