RecBole框架中实现对抗训练的技术实践
2025-06-19 03:10:19作者:邵娇湘
对抗训练在推荐系统中的应用背景
对抗训练作为一种重要的机器学习技术,在推荐系统领域展现出独特的价值。RecBole作为一款优秀的推荐系统开源框架,其灵活的架构设计为开发者实现各类创新模型提供了良好基础。本文将深入探讨如何在RecBole框架中实现对抗训练机制,特别是针对参数分块优化的特殊场景。
对抗训练的核心挑战
在实现对抗训练时,开发者通常会面临几个关键挑战:
- 参数分组优化:需要将模型参数划分为不同组别,分别应用不同的优化目标
- 梯度计算冲突:当多个优化器作用于同一计算图时,容易出现梯度计算冲突
- 训练稳定性:对抗训练过程中需要保持训练过程的稳定性
RecBole中的对抗训练实现方案
自定义Trainer类
在RecBole中实现对抗训练,最直接的方式是继承并重写基础的Trainer类。通过创建自定义的INVTrainer类,开发者可以完全控制训练流程中的优化器行为。
class INVTrainer(Trainer):
def __init__(self, config, model):
super(INVTrainer, self).__init__(config, model)
# 参数分组
all_params = list(self.model.parameters())
env_generator_params = list(self.model.env_generator.parameters())
model_params = [param for param in all_params if param not in env_generator_params]
# 创建不同优化器
self.optimizer_max = self._build_optimizer(env_generator_params)
self.optimizer_min = self._build_optimizer(model_params)
训练流程控制
在训练过程中,需要特别注意以下几点:
- 交替优化策略:可以设置特定的batch间隔来交替执行不同优化器
- 梯度保留机制:使用retain_graph=True保持计算图不被释放
- 梯度清零时机:确保在每次反向传播前正确清零梯度
def _train_epoch(self, train_data, epoch_idx, loss_func=None, show_progress=False):
for batch_idx, interaction in enumerate(train_data):
# 前向计算
losses = loss_func(interaction)
# 主优化器步骤
self.optimizer_min.zero_grad()
loss.backward(retain_graph=True)
self.optimizer_min.step()
# 对抗优化器步骤(每隔特定batch执行)
if batch_idx % 3 == 0:
irm_loss = compute_irm_loss() # 计算对抗损失
self.optimizer_max.zero_grad()
irm_loss.backward()
self.optimizer_max.step()
常见问题解决方案
在实现过程中,开发者可能会遇到"RuntimeError: Trying to backward through the graph a second time"这类错误。这通常是由于:
- 计算图过早释放:没有正确设置retain_graph参数
- 梯度累积问题:在多次反向传播前未正确清零梯度
- 参数共享冲突:不同优化器优化的参数间存在意外的依赖关系
解决方案包括:
- 确保每次反向传播前梯度清零
- 合理设置retain_graph参数
- 检查参数分组的完整性,避免遗漏或重复
最佳实践建议
- 梯度检查:在开发过程中定期检查梯度值,确保没有出现梯度爆炸或消失
- 学习率调整:对抗训练中不同优化器可能需要不同的学习率策略
- 训练监控:记录并可视化不同损失项的变化趋势,及时发现问题
- 内存管理:对抗训练通常需要更多内存,注意及时释放无用缓存
总结
在RecBole框架中实现对抗训练需要深入理解PyTorch的自动微分机制和RecBole的训练流程设计。通过合理继承和扩展Trainer类,开发者可以灵活实现各种复杂的对抗训练策略。关键是要处理好参数分组、梯度计算和优化器调度等核心环节,同时注意训练过程中的稳定性和效率问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
651
149
Ascend Extension for PyTorch
Python
211
222
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
656
291
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
640
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
251
319