RecBole框架中实现对抗训练的技术实践
2025-06-19 08:24:37作者:邵娇湘
对抗训练在推荐系统中的应用背景
对抗训练作为一种重要的机器学习技术,在推荐系统领域展现出独特的价值。RecBole作为一款优秀的推荐系统开源框架,其灵活的架构设计为开发者实现各类创新模型提供了良好基础。本文将深入探讨如何在RecBole框架中实现对抗训练机制,特别是针对参数分块优化的特殊场景。
对抗训练的核心挑战
在实现对抗训练时,开发者通常会面临几个关键挑战:
- 参数分组优化:需要将模型参数划分为不同组别,分别应用不同的优化目标
- 梯度计算冲突:当多个优化器作用于同一计算图时,容易出现梯度计算冲突
- 训练稳定性:对抗训练过程中需要保持训练过程的稳定性
RecBole中的对抗训练实现方案
自定义Trainer类
在RecBole中实现对抗训练,最直接的方式是继承并重写基础的Trainer类。通过创建自定义的INVTrainer类,开发者可以完全控制训练流程中的优化器行为。
class INVTrainer(Trainer):
def __init__(self, config, model):
super(INVTrainer, self).__init__(config, model)
# 参数分组
all_params = list(self.model.parameters())
env_generator_params = list(self.model.env_generator.parameters())
model_params = [param for param in all_params if param not in env_generator_params]
# 创建不同优化器
self.optimizer_max = self._build_optimizer(env_generator_params)
self.optimizer_min = self._build_optimizer(model_params)
训练流程控制
在训练过程中,需要特别注意以下几点:
- 交替优化策略:可以设置特定的batch间隔来交替执行不同优化器
- 梯度保留机制:使用retain_graph=True保持计算图不被释放
- 梯度清零时机:确保在每次反向传播前正确清零梯度
def _train_epoch(self, train_data, epoch_idx, loss_func=None, show_progress=False):
for batch_idx, interaction in enumerate(train_data):
# 前向计算
losses = loss_func(interaction)
# 主优化器步骤
self.optimizer_min.zero_grad()
loss.backward(retain_graph=True)
self.optimizer_min.step()
# 对抗优化器步骤(每隔特定batch执行)
if batch_idx % 3 == 0:
irm_loss = compute_irm_loss() # 计算对抗损失
self.optimizer_max.zero_grad()
irm_loss.backward()
self.optimizer_max.step()
常见问题解决方案
在实现过程中,开发者可能会遇到"RuntimeError: Trying to backward through the graph a second time"这类错误。这通常是由于:
- 计算图过早释放:没有正确设置retain_graph参数
- 梯度累积问题:在多次反向传播前未正确清零梯度
- 参数共享冲突:不同优化器优化的参数间存在意外的依赖关系
解决方案包括:
- 确保每次反向传播前梯度清零
- 合理设置retain_graph参数
- 检查参数分组的完整性,避免遗漏或重复
最佳实践建议
- 梯度检查:在开发过程中定期检查梯度值,确保没有出现梯度爆炸或消失
- 学习率调整:对抗训练中不同优化器可能需要不同的学习率策略
- 训练监控:记录并可视化不同损失项的变化趋势,及时发现问题
- 内存管理:对抗训练通常需要更多内存,注意及时释放无用缓存
总结
在RecBole框架中实现对抗训练需要深入理解PyTorch的自动微分机制和RecBole的训练流程设计。通过合理继承和扩展Trainer类,开发者可以灵活实现各种复杂的对抗训练策略。关键是要处理好参数分组、梯度计算和优化器调度等核心环节,同时注意训练过程中的稳定性和效率问题。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C098
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00
最新内容推荐
探索未来显示技术:Adafruit_SH1106 图形库 推荐使用 taggingJS:一款轻量级的前端标签插件!【亲测免费】 探索像素级完美的结构化运动:PixSFM 推荐开源项目:DropPoint - 让拖放操作更简单【亲测免费】 推荐开源项目:picocom——小巧而强大的串口通信工具 推荐使用:NATS .NET 客户端【亲测免费】 推荐开源项目:MiracleCast - 智能无线显示实现 探索安全新维度:backdoor-apk 动态后门注入工具 探秘Viasfora:Visual Studio 2022的文本编辑增强利器 推荐使用:go-reuseport - 实现高效端口复用的Go语言库
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
477
3.56 K
React Native鸿蒙化仓库
JavaScript
287
340
暂无简介
Dart
728
175
Ascend Extension for PyTorch
Python
287
320
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
849
446
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
233
98
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
450
180
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.28 K
704