AWS SDK for pandas中OpenSearch索引性能问题解析
2025-06-16 12:03:43作者:伍霜盼Ellen
在使用AWS SDK for pandas(原AWS Data Wrangler)时,开发者可能会遇到将大型DataFrame索引到OpenSearch时性能下降的问题。本文将深入分析这一现象的原因,并提供有效的解决方案。
问题现象
当尝试使用wr.opensearch.index_df()方法将包含20万行以上的大型DataFrame索引到OpenSearch时,操作会陷入停滞状态,无法完成。示例代码如下:
import pandas as pd
import numpy as np
# 生成包含20万行的测试DataFrame
num_rows = 200000
data = {
"id": range(1, num_rows + 1),
"value": np.random.random(size=num_rows),
"category": np.random.choice(['A', 'B', 'C'], size=num_rows),
"timestamp": pd.date_range(start="2022-01-01", periods=num_rows, freq="S"),
}
df = pd.DataFrame(data)
# 尝试索引到OpenSearch
wr.opensearch.index_df(
client,
df=df,
index="my_index",
use_threads=False,
id_keys=["Name"],
bulk_size=200,
enable_refresh_interval=False
)
根本原因分析
经过深入调查,发现这个问题与DataFrame的类型密切相关。当使用Modin DataFrame而非标准Pandas DataFrame时,会导致索引操作性能显著下降。Modin虽然设计用于加速大型数据集的处理,但在与OpenSearch索引的交互中存在兼容性问题。
解决方案
解决此问题的方法非常简单:将Modin DataFrame转换为标准Pandas DataFrame。转换后,索引操作将恢复正常性能。这一转换可以通过以下方式实现:
# 如果df是Modin DataFrame
pandas_df = df._to_pandas()
# 或者显式转换为Pandas DataFrame
pandas_df = pd.DataFrame(df)
性能优化建议
除了上述解决方案外,针对大型数据集索引到OpenSearch,还可以考虑以下优化措施:
- 批量大小调整:适当增加
bulk_size参数值,减少网络请求次数 - 多线程利用:设置
use_threads=True以启用并行处理 - 索引优化:在索引大量数据前,临时禁用刷新(
enable_refresh_interval=False) - 内存管理:对于超大型数据集,考虑分批处理
总结
在使用AWS SDK for pandas与OpenSearch交互时,确保使用标准Pandas DataFrame可以避免性能问题。这一发现不仅解决了当前问题,也提醒开发者在数据生态系统集成时要注意不同数据处理框架间的兼容性。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.32 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
245
282
React Native鸿蒙化仓库
JavaScript
272
328