ONNXRuntime C++ 实现动态批量推理的技术实践
2025-05-14 14:33:45作者:俞予舒Fleming
背景介绍
ONNXRuntime 是一个高性能的推理引擎,支持多种硬件加速后端。在实际应用中,我们经常需要处理批量输入数据以提高推理效率。本文将详细介绍如何在 C++ 环境下使用 ONNXRuntime 实现动态批量推理,特别是针对图像输入的处理。
核心挑战
在 C++ 中实现 ONNXRuntime 的批量推理时,开发者常遇到以下问题:
- 输入张量形状处理不当
- 图像预处理流程不规范
- 内存管理不严谨
- 异常处理机制缺失
解决方案
1. 模型初始化
首先需要正确初始化 ONNXRuntime 会话,并设置适当的执行提供者选项:
void model::initialize(OnnxENV* env, std::string model_path) {
batch_size = 1; // 可动态调整的批量大小
// 转换模型路径为宽字符格式
std::wstring widestr = std::wstring(model_path.begin(), model_path.end());
const wchar_t* widecstr = widestr.c_str();
// 创建会话
session = Ort::Session(env->env, widecstr, session_options);
// 获取输入输出节点信息
num_input_nodes = session.GetInputCount();
num_output_nodes = session.GetOutputCount();
// 获取输入张量形状
input_node_dims = session.GetInputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();
input_node_dims[0] = batch_size; // 设置动态批量维度
}
2. 图像预处理
正确的图像预处理是批量推理的关键。推荐使用 OpenCV 的 blobFromImages 函数简化处理流程:
std::vector<float> model::preprocessing(const cv::Mat& image) {
// 调整图像尺寸
cv::Mat resized_img;
cv::resize(image, resized_img, cv::Size(model_width, model_height));
// 转换颜色空间
cv::cvtColor(resized_img, resized_img, cv::COLOR_BGR2RGB);
// 创建blob并归一化
cv::Mat blob;
cv::dnn::blobFromImage(resized_img, blob, 1.0/255.0);
// 转换为vector<float>
std::vector<float> input_data(blob.begin<float>(), blob.end<float>());
return input_data;
}
3. 创建输入张量
使用预处理后的数据创建 ONNXRuntime 输入张量:
Ort::Value createInputTensor(const std::vector<float>& input_data,
const std::vector<int64_t>& input_shape) {
// 创建内存信息描述符
Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(
OrtAllocatorType::OrtArenaAllocator,
OrtMemType::OrtMemTypeDefault);
// 创建张量
return Ort::Value::CreateTensor<float>(
memory_info,
const_cast<float*>(input_data.data()),
input_data.size(),
input_shape.data(),
input_shape.size());
}
4. 执行推理
正确执行批量推理的流程:
void runInference(Ort::Session& session,
const std::vector<Ort::Value>& input_tensors) {
try {
// 准备输出张量容器
std::vector<Ort::Value> output_tensors;
// 执行推理
session.Run(Ort::RunOptions{nullptr},
input_names.data(),
input_tensors.data(),
input_tensors.size(),
output_names.data(),
output_tensors.data(),
output_names.size());
// 处理输出结果...
} catch (const Ort::Exception& e) {
std::cerr << "推理错误: " << e.what() << std::endl;
}
}
最佳实践建议
-
动态批量处理:在模型导出时应设置批量维度为-1,表示支持动态批量大小
-
内存管理:
- 使用智能指针管理资源
- 避免不必要的内存拷贝
- 预分配内存空间
-
异常处理:
- 捕获并处理 ONNXRuntime 异常
- 添加详细的错误日志
-
性能优化:
- 使用合适的执行提供者(CUDA/TensorRT)
- 启用图优化
- 考虑使用异步推理
常见问题排查
-
输入形状不匹配:
- 检查模型预期的输入形状
- 验证预处理后的数据形状
- 确保批量维度正确设置
-
推理失败:
- 检查输入数据范围(是否已归一化)
- 验证执行提供者是否可用
- 检查模型是否支持当前ONNXRuntime版本
-
性能问题:
- 分析预处理耗时
- 检查是否启用了合适的加速后端
- 考虑使用固定批量大小以获得最佳性能
总结
通过本文介绍的方法,开发者可以在 C++ 环境中高效地实现 ONNXRuntime 的批量推理功能。关键在于正确处理输入张量的形状、规范图像预处理流程以及合理管理内存资源。对于需要高性能的场景,建议结合 TensorRT 或 CUDA 执行提供者,并针对具体应用场景进行优化。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
509