ONNXRuntime C++ 实现动态批量推理的技术实践
2025-05-14 12:37:05作者:俞予舒Fleming
背景介绍
ONNXRuntime 是一个高性能的推理引擎,支持多种硬件加速后端。在实际应用中,我们经常需要处理批量输入数据以提高推理效率。本文将详细介绍如何在 C++ 环境下使用 ONNXRuntime 实现动态批量推理,特别是针对图像输入的处理。
核心挑战
在 C++ 中实现 ONNXRuntime 的批量推理时,开发者常遇到以下问题:
- 输入张量形状处理不当
- 图像预处理流程不规范
- 内存管理不严谨
- 异常处理机制缺失
解决方案
1. 模型初始化
首先需要正确初始化 ONNXRuntime 会话,并设置适当的执行提供者选项:
void model::initialize(OnnxENV* env, std::string model_path) {
batch_size = 1; // 可动态调整的批量大小
// 转换模型路径为宽字符格式
std::wstring widestr = std::wstring(model_path.begin(), model_path.end());
const wchar_t* widecstr = widestr.c_str();
// 创建会话
session = Ort::Session(env->env, widecstr, session_options);
// 获取输入输出节点信息
num_input_nodes = session.GetInputCount();
num_output_nodes = session.GetOutputCount();
// 获取输入张量形状
input_node_dims = session.GetInputTypeInfo(0).GetTensorTypeAndShapeInfo().GetShape();
input_node_dims[0] = batch_size; // 设置动态批量维度
}
2. 图像预处理
正确的图像预处理是批量推理的关键。推荐使用 OpenCV 的 blobFromImages 函数简化处理流程:
std::vector<float> model::preprocessing(const cv::Mat& image) {
// 调整图像尺寸
cv::Mat resized_img;
cv::resize(image, resized_img, cv::Size(model_width, model_height));
// 转换颜色空间
cv::cvtColor(resized_img, resized_img, cv::COLOR_BGR2RGB);
// 创建blob并归一化
cv::Mat blob;
cv::dnn::blobFromImage(resized_img, blob, 1.0/255.0);
// 转换为vector<float>
std::vector<float> input_data(blob.begin<float>(), blob.end<float>());
return input_data;
}
3. 创建输入张量
使用预处理后的数据创建 ONNXRuntime 输入张量:
Ort::Value createInputTensor(const std::vector<float>& input_data,
const std::vector<int64_t>& input_shape) {
// 创建内存信息描述符
Ort::MemoryInfo memory_info = Ort::MemoryInfo::CreateCpu(
OrtAllocatorType::OrtArenaAllocator,
OrtMemType::OrtMemTypeDefault);
// 创建张量
return Ort::Value::CreateTensor<float>(
memory_info,
const_cast<float*>(input_data.data()),
input_data.size(),
input_shape.data(),
input_shape.size());
}
4. 执行推理
正确执行批量推理的流程:
void runInference(Ort::Session& session,
const std::vector<Ort::Value>& input_tensors) {
try {
// 准备输出张量容器
std::vector<Ort::Value> output_tensors;
// 执行推理
session.Run(Ort::RunOptions{nullptr},
input_names.data(),
input_tensors.data(),
input_tensors.size(),
output_names.data(),
output_tensors.data(),
output_names.size());
// 处理输出结果...
} catch (const Ort::Exception& e) {
std::cerr << "推理错误: " << e.what() << std::endl;
}
}
最佳实践建议
-
动态批量处理:在模型导出时应设置批量维度为-1,表示支持动态批量大小
-
内存管理:
- 使用智能指针管理资源
- 避免不必要的内存拷贝
- 预分配内存空间
-
异常处理:
- 捕获并处理 ONNXRuntime 异常
- 添加详细的错误日志
-
性能优化:
- 使用合适的执行提供者(CUDA/TensorRT)
- 启用图优化
- 考虑使用异步推理
常见问题排查
-
输入形状不匹配:
- 检查模型预期的输入形状
- 验证预处理后的数据形状
- 确保批量维度正确设置
-
推理失败:
- 检查输入数据范围(是否已归一化)
- 验证执行提供者是否可用
- 检查模型是否支持当前ONNXRuntime版本
-
性能问题:
- 分析预处理耗时
- 检查是否启用了合适的加速后端
- 考虑使用固定批量大小以获得最佳性能
总结
通过本文介绍的方法,开发者可以在 C++ 环境中高效地实现 ONNXRuntime 的批量推理功能。关键在于正确处理输入张量的形状、规范图像预处理流程以及合理管理内存资源。对于需要高性能的场景,建议结合 TensorRT 或 CUDA 执行提供者,并针对具体应用场景进行优化。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C080
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
465
3.46 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
196
80
暂无简介
Dart
715
172
Ascend Extension for PyTorch
Python
273
310
React Native鸿蒙化仓库
JavaScript
285
331
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
843
424
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
692
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
106
120