【亲测免费】 koboldcpp-rocm 项目使用指南
1. 项目介绍
koboldcpp-rocm 是一个用于在边缘设备上进行 AI 推理的简单单文件解决方案。它允许用户通过 KoboldAI 的 UI 运行各种 GGML 模型,并利用 AMD ROCm 进行加速。该项目基于 llama.cpp 和 KoboldCpp,由 YellowRoseCx 维护,旨在为使用 AMD GPU 的用户提供高效的 AI 文本生成软件。
2. 项目快速启动
2.1 Linux 安装与启动
在 Linux 系统上,可以通过以下步骤快速安装和启动 koboldcpp-rocm:
-
克隆项目仓库:
git clone https://github.com/YellowRoseCx/koboldcpp-rocm.git -b main --depth 1 -
进入项目目录并编译:
cd koboldcpp-rocm make LLAMA_HIPBLAS=1 -j4 -
启动 KoboldCPP GUI:
python3 koboldcpp.py
2.2 Windows 安装与启动
在 Windows 系统上,可以通过以下步骤快速安装和启动 koboldcpp-rocm:
-
下载最新版本的
koboldcpp_rocm.exe或克隆项目仓库。 -
运行
koboldcpp_rocm.exe,启动 GUI 界面。 -
在 GUI 中选择 "Use hipBLAS (ROCm)" 并设置 GPU 层数。
3. 应用案例和最佳实践
3.1 文本生成
koboldcpp-rocm 可以用于生成高质量的文本内容,适用于写作助手、聊天机器人等应用场景。通过调整 GPU 层数和上下文大小,可以优化生成速度和质量。
3.2 图像生成
结合 Stable Diffusion 等模型,koboldcpp-rocm 还可以用于生成图像内容,适用于艺术创作、设计辅助等领域。
3.3 最佳实践
- 优化 GPU 使用:通过
--gpulayers参数调整 GPU 层数,平衡速度和内存使用。 - 增加上下文大小:使用
--contextsize参数增加上下文大小,提升生成文本的连贯性。 - 多线程优化:通过
--threads和--blasthreads参数优化多线程性能。
4. 典型生态项目
4.1 KoboldAI
KoboldAI 是一个开源的 AI 文本生成平台,支持多种模型和自定义设置。koboldcpp-rocm 是其一个重要的实现,特别针对 AMD GPU 进行了优化。
4.2 llama.cpp
llama.cpp 是 koboldcpp-rocm 的基础项目,提供了高效的 GGML 模型推理能力。通过结合 koboldcpp-rocm,用户可以在 AMD GPU 上获得更好的性能。
4.3 Stable Diffusion
Stable Diffusion 是一个用于生成图像的开源模型,结合 koboldcpp-rocm 可以实现高效的图像生成任务,适用于各种创意和设计工作。
通过以上模块的介绍,用户可以快速了解并上手使用 koboldcpp-rocm 项目,实现高效的 AI 推理和文本生成任务。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00