使用lm-evaluation-harness评估Llama-4-Scout模型的指令跟随能力
2025-05-26 01:04:38作者:咎岭娴Homer
在大型语言模型评估领域,指令跟随能力(Instruction Following)是衡量模型性能的重要指标之一。本文将介绍如何使用EleutherAI的lm-evaluation-harness工具对Meta最新发布的Llama-4-Scout模型进行IFEval评估,并分析评估结果的技术细节。
IFEval评估概述
IFEval(Instruction Following Evaluation)是一种专门设计用于测试语言模型遵循复杂指令能力的评估基准。该评估主要考察模型在以下两个方面的表现:
- 严格实例级别准确率(inst_level_strict_acc)
- 严格提示级别准确率(prompt_level_strict_acc)
这两个指标的平均值通常被用作模型指令跟随能力的综合评分。根据公开数据,Meta此前发布的Llama-3.1-70B模型在该评估中获得87%的分数,而Llama-3.3-70B模型则达到了92%的优秀表现。
评估环境配置
在对Llama-4-Scout-17B模型进行评估时,需要注意几个关键技术配置:
- 显存需求:评估过程中模型消耗约640GB GPU显存,相当于一个完整的H100计算节点
- 评估命令:必须添加
--apply_chat_template参数以正确应用模型的聊天模板 - 并行配置:建议设置
tensor_parallel_size=8以充分利用多GPU资源
评估结果分析
经过正确配置后,Llama-4-Scout-17B模型在IFEval评估中获得了88.25%的综合评分(四个子指标的平均值)。这一结果介于Llama-3.1和Llama-3.3之间,表明:
- 模型保持了良好的指令跟随能力
- 相比前代70B参数的版本,17B参数的Scout模型在保持高性能的同时显著降低了计算资源需求
- 模型在结构化输出生成和工具调用方面表现出色
技术要点总结
- 聊天模板应用:评估时必须正确应用模型的聊天模板,否则会导致评分偏差
- 资源管理:大型模型评估需要合理配置并行参数和显存利用率
- 结果解读:IFEval的完整评估应包含多个子指标的综合分析
通过本次评估实践,我们验证了lm-evaluation-harness工具在大型语言模型评估中的有效性,同时也展示了Llama-4-Scout模型在指令跟随能力方面的优秀表现。这种评估方法为研究人员提供了可靠的工具来量化比较不同语言模型的性能特点。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
JTT794-2019道路运输车辆卫星定位系统车载终端技术要求:引领智能运输新标准 前端ofd在线预览-showofd:开启OFD文件网页端查看新纪元 SIM8200EA-M25G通信模块引脚说明文档:快速掌握5G模块应用核心 软件需求调研记录_模板使用说明:项目核心功能/场景 Win10Win7Protel99se库添加助手:让兼容性难题迎刃而解 停车场管理系统C语言实现:高效管理车辆进出及计费 美国地区shapefile文件下载:为地理信息系统研究提供详尽数据支持 CrystalIndex资源文件介绍:专业晶面指数计算与标定工具 mac版本网络调试助手工具:简化Netty开发,提升调试效率 电磁场与电磁波郭辉萍教材下载:一本电磁学领域的优质教材
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134