使用lm-evaluation-harness评估Llama-4-Scout模型的指令跟随能力
2025-05-26 19:00:08作者:咎岭娴Homer
在大型语言模型评估领域,指令跟随能力(Instruction Following)是衡量模型性能的重要指标之一。本文将介绍如何使用EleutherAI的lm-evaluation-harness工具对Meta最新发布的Llama-4-Scout模型进行IFEval评估,并分析评估结果的技术细节。
IFEval评估概述
IFEval(Instruction Following Evaluation)是一种专门设计用于测试语言模型遵循复杂指令能力的评估基准。该评估主要考察模型在以下两个方面的表现:
- 严格实例级别准确率(inst_level_strict_acc)
- 严格提示级别准确率(prompt_level_strict_acc)
这两个指标的平均值通常被用作模型指令跟随能力的综合评分。根据公开数据,Meta此前发布的Llama-3.1-70B模型在该评估中获得87%的分数,而Llama-3.3-70B模型则达到了92%的优秀表现。
评估环境配置
在对Llama-4-Scout-17B模型进行评估时,需要注意几个关键技术配置:
- 显存需求:评估过程中模型消耗约640GB GPU显存,相当于一个完整的H100计算节点
- 评估命令:必须添加
--apply_chat_template参数以正确应用模型的聊天模板 - 并行配置:建议设置
tensor_parallel_size=8以充分利用多GPU资源
评估结果分析
经过正确配置后,Llama-4-Scout-17B模型在IFEval评估中获得了88.25%的综合评分(四个子指标的平均值)。这一结果介于Llama-3.1和Llama-3.3之间,表明:
- 模型保持了良好的指令跟随能力
- 相比前代70B参数的版本,17B参数的Scout模型在保持高性能的同时显著降低了计算资源需求
- 模型在结构化输出生成和工具调用方面表现出色
技术要点总结
- 聊天模板应用:评估时必须正确应用模型的聊天模板,否则会导致评分偏差
- 资源管理:大型模型评估需要合理配置并行参数和显存利用率
- 结果解读:IFEval的完整评估应包含多个子指标的综合分析
通过本次评估实践,我们验证了lm-evaluation-harness工具在大型语言模型评估中的有效性,同时也展示了Llama-4-Scout模型在指令跟随能力方面的优秀表现。这种评估方法为研究人员提供了可靠的工具来量化比较不同语言模型的性能特点。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218