OpenLLMetry项目中Gemini模型输入属性设置问题分析
2025-06-06 09:25:03作者:毕习沙Eudora
问题背景
在OpenLLMetry项目中对Google的Gemini生成式AI模型进行instrumentation时,发现输入消息属性设置存在不正确的问题。具体表现为gen_ai.prompt.N.*属性的设置方式与其他主流模型(如OpenAI和Anthropic)不一致,这可能导致监控数据的不一致性和分析困难。
问题表现
当前实现中,Gemini模型的instrumentation会设置以下属性:
gen_ai.completion.0.content: "cold\n"
gen_ai.prompt.0.user: "The opposite of hot is\n"
而按照OpenAI和Anthropic的标准实现,正确的属性设置应该是:
gen_ai.prompt.0.content: "The opposite of hot is\n"
gen_ai.prompt.0.role: "user"
gen_ai.completion.0.content: "cold\n"
gen_ai.completion.0.role: "assistant"
技术分析
这种不一致性主要源于instrumentation层对Gemini API响应结构的处理方式。Gemini API返回的数据结构与OpenAI等有所不同,但instrumentation层应该保持统一的监控数据格式。
问题的核心在于_set_input_attributes函数的实现没有遵循统一的标准。该函数需要处理两种主要类型的请求:
- Completion类型请求:处理单次完成的请求
- Chat类型请求:处理对话式的多轮请求
解决方案
要实现统一的属性设置,需要对instrumentation代码进行以下调整:
-
统一prompt属性设置:
- 使用
gen_ai.prompt.N.content代替gen_ai.prompt.N.user - 显式设置role属性为"user"
- 使用
-
完善completion属性:
- 除了设置content外,还应设置role为"assistant"
-
多消息支持:
- 对于多轮对话,需要为每条消息设置正确的序号和角色
实现建议
修改后的instrumentation代码应该能够正确处理各种请求类型,同时保持与其他模型instrumentation的一致性。这包括:
- 正确解析Gemini API的请求和响应结构
- 按照标准格式设置监控属性
- 处理单次完成和对话式交互的不同场景
影响评估
这一修改将带来以下好处:
- 监控数据一致性:所有模型的监控数据将采用相同格式
- 分析工具兼容性:现有分析工具可以直接处理Gemini的监控数据
- 用户体验统一:开发者无需关注不同模型间的监控数据差异
总结
保持不同AI模型instrumentation的一致性对于构建可靠的监控系统至关重要。通过修正Gemini模型的属性设置问题,OpenLLMetry项目将能够提供更加统一和可靠的AI模型监控能力,为开发者提供更好的使用体验。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
268
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1