Kronuz/Xapiand 空间搜索教程:查找附近大城市
2025-06-02 16:19:40作者:羿妍玫Ivan
前言
在现代应用中,空间搜索功能变得越来越重要。无论是外卖平台查找附近餐厅,还是地图应用寻找周边景点,都需要高效的空间搜索能力。Kronuz/Xapiand 提供了强大的空间搜索功能,本教程将带你了解如何使用 Xapiand 实现高效的空间搜索。
准备工作
数据集介绍
我们将使用美国人口超过10万的大城市数据集,这些数据包含:
- 城市名称
- 人口数量
- 地理位置坐标(经纬度)
数据加载
首先需要将数据集导入到 Xapiand 中。数据集采用 NDJSON 格式,每条记录代表一个城市信息。使用 RESTORE 命令可以轻松完成数据导入:
RESTORE /cities/
Content-Type: application/x-ndjson
@cities.ndjson
导入完成后,系统会返回处理结果,包括成功导入的记录数等信息。
基础空间搜索
搜索场景
假设我们想查找距离加州埃尔塞里托市(El Cerrito)20公里范围内的大城市。埃尔塞里托位于旧金山湾区,坐标为(37.9180233, -122.3198401)。
搜索实现
使用 SEARCH 命令结合空间查询条件:
SEARCH /cities/
{
"_query": {
"population": {
"_in": {
"_range": {
"_from": 100000
}
}
},
"location": {
"_in": {
"_circle": {
"_latitude": 37.9180233,
"_longitude": -122.3198401,
"_radius": 20000
}
}
}
},
"_selector": "city"
}
技术解析
- 人口筛选:
"_from": 100000确保只返回人口超过10万的城市 - 空间搜索:使用
_circle参数定义搜索范围_latitude和_longitude指定中心点坐标_radius设置搜索半径(单位:米)
- 结果选择:
_selector指定只返回城市名称
搜索结果
系统将返回符合条件的城市列表,按距离从近到远排序:
{
"total": 5,
"count": 5,
"hits": [
"Richmond",
"Berkeley",
"Oakland",
"San Francisco",
"Vallejo"
]
}
高级排序功能
场景扩展
有时我们需要保持原始搜索条件,但改变排序的参考点。例如,我们仍然想查找埃尔塞里托附近的大城市,但希望结果按照距离旧金山市中心的远近排序。
实现方法
使用_sort参数改变排序参考点:
SEARCH /cities/
{
"_query": {
"population": {
"_in": {
"_range": {
"_from": 100000
}
}
},
"location": {
"_in": {
"_circle": {
"_latitude": 37.9180233,
"_longitude": -122.3198401,
"_radius": 20000
}
}
}
},
"_sort": {
"location": {
"_order": "asc",
"_value": {
"_point": {
"_latitude": 37.7576171,
"_longitude": -122.5776844,
}
}
}
},
"_selector": "city"
}
技术要点
- 保持原搜索条件:查询部分与之前相同
- 自定义排序:
- 使用
_sort参数指定排序方式 _point定义新的参考点坐标_order设置为"asc"表示按距离升序排列
- 使用
排序结果
返回相同的城市列表,但排序顺序发生变化:
{
"total": 5,
"count": 5,
"hits": [
"San Francisco",
"Oakland",
"Richmond",
"Berkeley",
"Vallejo"
]
}
性能优化原理
Xapiand 使用 Hierarchical Triangular Mesh (HTM) 技术优化空间搜索:
- 空间索引:将地球表面划分为三角形网格(trixels)
- 快速筛选:首先确定哪些网格与搜索范围相交
- 精确计算:只在相关网格内进行精确距离计算
这种方法大大减少了需要计算的距离比较次数,提高了查询效率。
实际应用建议
- 半径选择:根据实际需求合理设置搜索半径,过大可能影响性能
- 结果分页:对于可能返回大量结果的查询,考虑添加分页参数
- 复合查询:可以结合其他条件(如城市类型、人口区间等)进行更精确的筛选
- 缓存策略:对于频繁查询的固定位置,考虑实现缓存机制
总结
通过本教程,我们学习了如何在 Kronuz/Xapiand 中实现高效的空间搜索功能。从基础的空间范围查询到高级的排序控制,Xapiand 提供了灵活而强大的空间数据处理能力。掌握这些技术可以帮助开发者构建各种基于位置服务的应用,如附近搜索、地理围栏等功能。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
538
3.76 K
暂无简介
Dart
774
192
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
756
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
356
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
142
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
249