Audit.NET 中实现 CosmosDB 按实体条目存储审计日志的优化方案
2025-07-01 11:03:01作者:柏廷章Berta
背景介绍
在使用 Audit.NET 进行审计日志记录时,默认的 Azure CosmosDB 数据提供程序会将整个 Entity Framework 事件作为一个文档存储。这种存储方式虽然简单,但在实际应用中可能会遇到一些限制,特别是在需要针对单个实体操作进行查询或设置分区键时。
默认存储结构的问题
默认情况下,Audit.NET 会将所有实体操作记录在一个文档中,结构如下:
{
"EntityFrameworkEvent": {
"Database": "数据库名称",
"ContextId": "上下文ID",
"Entries": [
// 实体操作条目数组
]
}
}
这种结构存在两个主要问题:
- 分区键设置困难:审计细节位于嵌套的 Entries 数组中,难以直接作为分区键
- 查询效率问题:当需要查询特定实体类型的操作时,需要扫描整个文档
优化方案设计
为了解决这些问题,我们可以通过自定义数据提供程序,将每个实体操作存储为独立的文档。优化后的文档结构如下:
{
"Database": "数据库名称",
"LinkKey": "关联操作的唯一标识",
// 实体操作详情
// 其他审计数据
}
实现方法
从 Audit.NET 25.0.3 版本开始,可以通过继承 AzureCosmosDataProvider 类并重写相关方法来实现这种优化存储方式:
public class CosmosEfDataProvider : AzureCosmosDataProvider
{
public CosmosEfDataProvider(Action<IAzureCosmosProviderConfigurator> config) : base(config) { }
public override async Task<object> InsertEventAsync(AuditEvent auditEvent, CancellationToken cancellationToken = default)
{
var container = base.GetContainer(auditEvent);
var efEvent = auditEvent.GetEntityFrameworkEvent();
foreach (var entry in efEvent.Entries)
{
var audit = new CustomAuditDocument
{
Database = efEvent.Database,
LinkKey = Guid.NewGuid(),
Entry = entry
};
await container.CreateItemAsync(audit, cancellationToken: cancellationToken);
}
return null;
}
}
优势分析
这种优化方案带来了几个显著优势:
- 灵活的分区策略:可以根据实体类型、操作时间等关键字段设置分区键
- 查询性能提升:针对特定实体类型的查询可以直接命中相关文档
- 存储粒度控制:可以针对不同类型的实体设计不同的文档结构
- 成本优化:细粒度的文档可以更好地利用 CosmosDB 的存储和吞吐量
实际应用建议
在实际项目中应用此方案时,建议考虑以下几点:
- 关联操作处理:通过 LinkKey 字段保持同一事务中多个操作的关联性
- 文档设计:根据查询需求设计文档结构,确保常用查询能够高效执行
- 分区策略:根据查询模式选择合适的分区键,如按日期、实体类型或租户ID
- 索引策略:为常用查询字段配置适当的索引
总结
通过自定义 Audit.NET 的 CosmosDB 数据提供程序,我们可以将审计日志的存储粒度从每个事务调整为每个实体操作。这种优化不仅解决了分区键设置的难题,还提升了查询效率和系统灵活性。对于使用 CosmosDB 作为审计存储的中大型应用,这种方案值得考虑实施。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
413
3.17 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
685
324
Ascend Extension for PyTorch
Python
227
255
暂无简介
Dart
678
160
React Native鸿蒙化仓库
JavaScript
265
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
492
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
343
146