Audit.NET 中实现 CosmosDB 按实体条目存储审计日志的优化方案
2025-07-01 11:03:01作者:柏廷章Berta
背景介绍
在使用 Audit.NET 进行审计日志记录时,默认的 Azure CosmosDB 数据提供程序会将整个 Entity Framework 事件作为一个文档存储。这种存储方式虽然简单,但在实际应用中可能会遇到一些限制,特别是在需要针对单个实体操作进行查询或设置分区键时。
默认存储结构的问题
默认情况下,Audit.NET 会将所有实体操作记录在一个文档中,结构如下:
{
"EntityFrameworkEvent": {
"Database": "数据库名称",
"ContextId": "上下文ID",
"Entries": [
// 实体操作条目数组
]
}
}
这种结构存在两个主要问题:
- 分区键设置困难:审计细节位于嵌套的 Entries 数组中,难以直接作为分区键
- 查询效率问题:当需要查询特定实体类型的操作时,需要扫描整个文档
优化方案设计
为了解决这些问题,我们可以通过自定义数据提供程序,将每个实体操作存储为独立的文档。优化后的文档结构如下:
{
"Database": "数据库名称",
"LinkKey": "关联操作的唯一标识",
// 实体操作详情
// 其他审计数据
}
实现方法
从 Audit.NET 25.0.3 版本开始,可以通过继承 AzureCosmosDataProvider 类并重写相关方法来实现这种优化存储方式:
public class CosmosEfDataProvider : AzureCosmosDataProvider
{
public CosmosEfDataProvider(Action<IAzureCosmosProviderConfigurator> config) : base(config) { }
public override async Task<object> InsertEventAsync(AuditEvent auditEvent, CancellationToken cancellationToken = default)
{
var container = base.GetContainer(auditEvent);
var efEvent = auditEvent.GetEntityFrameworkEvent();
foreach (var entry in efEvent.Entries)
{
var audit = new CustomAuditDocument
{
Database = efEvent.Database,
LinkKey = Guid.NewGuid(),
Entry = entry
};
await container.CreateItemAsync(audit, cancellationToken: cancellationToken);
}
return null;
}
}
优势分析
这种优化方案带来了几个显著优势:
- 灵活的分区策略:可以根据实体类型、操作时间等关键字段设置分区键
- 查询性能提升:针对特定实体类型的查询可以直接命中相关文档
- 存储粒度控制:可以针对不同类型的实体设计不同的文档结构
- 成本优化:细粒度的文档可以更好地利用 CosmosDB 的存储和吞吐量
实际应用建议
在实际项目中应用此方案时,建议考虑以下几点:
- 关联操作处理:通过 LinkKey 字段保持同一事务中多个操作的关联性
- 文档设计:根据查询需求设计文档结构,确保常用查询能够高效执行
- 分区策略:根据查询模式选择合适的分区键,如按日期、实体类型或租户ID
- 索引策略:为常用查询字段配置适当的索引
总结
通过自定义 Audit.NET 的 CosmosDB 数据提供程序,我们可以将审计日志的存储粒度从每个事务调整为每个实体操作。这种优化不仅解决了分区键设置的难题,还提升了查询效率和系统灵活性。对于使用 CosmosDB 作为审计存储的中大型应用,这种方案值得考虑实施。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 PANTONE潘通AI色板库:设计师必备的色彩管理利器 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 Python开发者的macOS终极指南:VSCode安装配置全攻略 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Jetson TX2开发板官方资源完全指南:从入门到精通 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
187
205
暂无简介
Dart
629
143
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
242
316
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
383
3.62 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
293
103
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
266
仓颉编译器源码及 cjdb 调试工具。
C++
128
858