Burr项目中的流式输出功能设计与实现
2025-07-10 13:34:51作者:宣利权Counsellor
概述
在现代LLM应用开发中,流式输出是一个关键需求。Burr项目通过创新的设计,为开发者提供了优雅的流式输出解决方案。本文将深入解析Burr框架中流式输出功能的设计思路、API演进和实现细节。
核心设计理念
Burr团队在设计流式输出功能时,主要考虑了以下几个关键点:
- 即时性与完整性:既要支持实时流式输出,又要保证最终结果的完整性
- 状态管理:流式输出过程中如何与Burr的状态管理机制协同工作
- API简洁性:提供直观易用的API接口,降低开发者学习成本
API演进历程
初始方案:Stream容器
最初设计考虑引入专门的Stream容器来包装生成器:
@action(writes=["response", "chat_history"])
def streaming_text_response(state: State, prompt: str) -> tuple[dict, State]:
generator = query_streaming(...).stream
stream = Stream.string(generator)
result = {"response": generator}
return result, state.update(response=generator).append(chat_history=result)
这种方案虽然可行,但引入了额外的概念和复杂度,不够Pythonic。
优化方案:直接使用生成器
经过深入讨论,团队决定利用Python生成器的原生特性:
@action(reads=["query"], writes=["response"])
def streaming_output_action(state: State) -> Generator[dict, None, Tuple[dict, State]]:
buffer = []
for word in ["hello", "world", "this", "is", "a", "test"]:
buffer.append(word)
yield {"response": word}
response = " ".join(buffer)
return {"response": response}, state.update(response=response)
这种设计更加简洁,充分利用了Python语言特性,特别是生成器的yield
和return
结合使用的特性。
最终API设计
Burr最终确定的流式输出API包含同步和异步两种形式:
同步API
result_generator = app.stream_result(halt_after=...)
for result in result_generator: # 获取中间结果
yield result['...']
action, state, result = result_generator.get() # 阻塞直到完成
异步API
result_generator = app.astream_result(halt_after=...)
async for result in result_generator: # 获取中间结果
yield result['...']
action, state, result = result_generator.get() # 阻塞直到完成
关键技术实现
-
生成器返回值处理:利用生成器可以同时
yield
和return
的特性,yield
用于流式输出中间结果,return
用于返回最终结果和状态 -
状态管理:流式处理过程中,状态更新会被延迟到生成器完全执行完毕
-
生命周期控制:
halt_before
和halt_after
参数控制执行流程- 创建
StreamingResultContainer
来管理流式结果
-
异常处理:确保在流式输出中断时,系统状态能够保持一致
最佳实践
- 流式LLM响应:
@action(reads=["prompt"], writes=["response"])
def streaming_llm_response(state: State) -> Generator[dict, None, Tuple[dict, State]]:
buffer = ""
for token in query_llm(state["prompt"]):
buffer += token
yield {"response": token}
return {"response": buffer}, state.update(response=buffer)
- 进度指示器:
@action(writes=["progress"])
def long_running_task(state: State) -> Generator[dict, None, Tuple[dict, State]]:
for i in range(100):
# 执行任务的一部分
yield {"progress": i}
return {"progress": 100}, state.update(progress=100)
设计考量
-
同步优先:当前版本优先实现了同步生成器支持,异步支持将在后续版本中完善
-
中间结果处理:对于中间步骤的流式输出,框架会自动执行完生成器
-
钩子执行时机:确保步骤完成钩子只在生成器完全执行后触发
总结
Burr的流式输出功能通过巧妙利用Python生成器特性,为开发者提供了强大而简洁的API。这种设计既满足了实时流式输出的需求,又与Burr的状态管理机制完美融合,为构建复杂的流式应用提供了坚实基础。随着异步支持的完善,这一功能将更加强大和灵活。
登录后查看全文
热门项目推荐
相关项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0267cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
144
1.93 K

deepin linux kernel
C
22
6

React Native鸿蒙化仓库
C++
192
274

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
930
553

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
423
392

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
75
66

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.11 K
0

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
64
511