Burr项目中的流式输出功能设计与实现
2025-07-10 15:30:15作者:宣利权Counsellor
概述
在现代LLM应用开发中,流式输出是一个关键需求。Burr项目通过创新的设计,为开发者提供了优雅的流式输出解决方案。本文将深入解析Burr框架中流式输出功能的设计思路、API演进和实现细节。
核心设计理念
Burr团队在设计流式输出功能时,主要考虑了以下几个关键点:
- 即时性与完整性:既要支持实时流式输出,又要保证最终结果的完整性
- 状态管理:流式输出过程中如何与Burr的状态管理机制协同工作
- API简洁性:提供直观易用的API接口,降低开发者学习成本
API演进历程
初始方案:Stream容器
最初设计考虑引入专门的Stream容器来包装生成器:
@action(writes=["response", "chat_history"])
def streaming_text_response(state: State, prompt: str) -> tuple[dict, State]:
generator = query_streaming(...).stream
stream = Stream.string(generator)
result = {"response": generator}
return result, state.update(response=generator).append(chat_history=result)
这种方案虽然可行,但引入了额外的概念和复杂度,不够Pythonic。
优化方案:直接使用生成器
经过深入讨论,团队决定利用Python生成器的原生特性:
@action(reads=["query"], writes=["response"])
def streaming_output_action(state: State) -> Generator[dict, None, Tuple[dict, State]]:
buffer = []
for word in ["hello", "world", "this", "is", "a", "test"]:
buffer.append(word)
yield {"response": word}
response = " ".join(buffer)
return {"response": response}, state.update(response=response)
这种设计更加简洁,充分利用了Python语言特性,特别是生成器的yield
和return
结合使用的特性。
最终API设计
Burr最终确定的流式输出API包含同步和异步两种形式:
同步API
result_generator = app.stream_result(halt_after=...)
for result in result_generator: # 获取中间结果
yield result['...']
action, state, result = result_generator.get() # 阻塞直到完成
异步API
result_generator = app.astream_result(halt_after=...)
async for result in result_generator: # 获取中间结果
yield result['...']
action, state, result = result_generator.get() # 阻塞直到完成
关键技术实现
-
生成器返回值处理:利用生成器可以同时
yield
和return
的特性,yield
用于流式输出中间结果,return
用于返回最终结果和状态 -
状态管理:流式处理过程中,状态更新会被延迟到生成器完全执行完毕
-
生命周期控制:
halt_before
和halt_after
参数控制执行流程- 创建
StreamingResultContainer
来管理流式结果
-
异常处理:确保在流式输出中断时,系统状态能够保持一致
最佳实践
- 流式LLM响应:
@action(reads=["prompt"], writes=["response"])
def streaming_llm_response(state: State) -> Generator[dict, None, Tuple[dict, State]]:
buffer = ""
for token in query_llm(state["prompt"]):
buffer += token
yield {"response": token}
return {"response": buffer}, state.update(response=buffer)
- 进度指示器:
@action(writes=["progress"])
def long_running_task(state: State) -> Generator[dict, None, Tuple[dict, State]]:
for i in range(100):
# 执行任务的一部分
yield {"progress": i}
return {"progress": 100}, state.update(progress=100)
设计考量
-
同步优先:当前版本优先实现了同步生成器支持,异步支持将在后续版本中完善
-
中间结果处理:对于中间步骤的流式输出,框架会自动执行完生成器
-
钩子执行时机:确保步骤完成钩子只在生成器完全执行后触发
总结
Burr的流式输出功能通过巧妙利用Python生成器特性,为开发者提供了强大而简洁的API。这种设计既满足了实时流式输出的需求,又与Burr的状态管理机制完美融合,为构建复杂的流式应用提供了坚实基础。随着异步支持的完善,这一功能将更加强大和灵活。
登录后查看全文
热门项目推荐
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- KKimi-K2-InstructKimi-K2-Instruct是月之暗面推出的尖端混合专家语言模型,拥有1万亿总参数和320亿激活参数,专为智能代理任务优化。基于创新的MuonClip优化器训练,模型在知识推理、代码生成和工具调用场景表现卓越,支持128K长上下文处理。作为即用型指令模型,它提供开箱即用的对话能力与自动化工具调用功能,无需复杂配置即可集成到现有系统。模型采用MLA注意力机制和SwiGLU激活函数,在vLLM等主流推理引擎上高效运行,特别适合需要快速响应的智能助手应用。开发者可通过兼容OpenAI/Anthropic的API轻松调用,或基于开源权重进行深度定制。【此简介由AI生成】Python00
cherry-studio
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端TypeScript043GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。04note-gen
一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。TSX02chatgpt-on-wechat
基于大模型搭建的聊天机器人,同时支持 微信公众号、企业微信应用、飞书、钉钉 等接入,可选择GPT3.5/GPT-4o/GPT-o1/ DeepSeek/Claude/文心一言/讯飞星火/通义千问/ Gemini/GLM-4/Claude/Kimi/LinkAI,能处理文本、语音和图片,访问操作系统和互联网,支持基于自有知识库进行定制企业智能客服。Python018
热门内容推荐
1 freeCodeCamp英语课程填空题提示缺失问题分析2 freeCodeCamp Cafe Menu项目中link元素的void特性解析3 freeCodeCamp课程中屏幕放大器知识点优化分析4 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp音乐播放器项目中的函数调用问题解析7 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 8 freeCodeCamp博客页面工作坊中的断言方法优化建议9 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析10 freeCodeCamp论坛排行榜项目中的错误日志规范要求
最新内容推荐
左手Annotators,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手controlnet-openpose-sdxl-1.0,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手ERNIE-4.5-VL-424B-A47B-Paddle,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手m3e-base,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手SDXL-Lightning,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手wav2vec2-base-960h,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手nsfw_image_detection,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手XTTS-v2,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手whisper-large-v3,右手GPT-4:企业AI战略的“开源”与“闭源”之辩 左手flux-ip-adapter,右手GPT-4:企业AI战略的“开源”与“闭源”之辩
项目优选
收起

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
674
449

openGauss kernel ~ openGauss is an open source relational database management system
C++
97
156

React Native鸿蒙化仓库
C++
139
223

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
52
15

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
113
254

Python - 100天从新手到大师
Python
817
149

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
524
43

🔥Almost最佳后端规范🔥页面现代美观,且专注设计与代码细节的高质量多租户中后台管理系统框架。开箱即用,持续迭代优化,持续提供舒适的开发体验。当前采用技术栈:Spring Boot3(Java17)、Vue3 & Arco Design、TS、Vite5 、Sa-Token、MyBatis Plus、Redisson、FastExcel、CosId、JetCache、JustAuth、Crane4j、Spring Doc、Hutool 等。
AI 编程纪元,从 ContiNew & AI 开始优雅编码,让 AI 也“吃点好的”。
Java
121
29

基于仓颉编程语言构建的 LLM Agent 开发框架,其主要特点包括:Agent DSL、支持 MCP 协议,支持模块化调用,支持任务智能规划。
Cangjie
589
44

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
705
97