Apache Seata中TCC模式与事务传播机制深度解析
2025-05-07 10:02:15作者:邓越浪Henry
什么是Seata TCC模式
Seata的TCC(Try-Confirm-Cancel)模式是一种分布式事务解决方案,它将一个分布式事务拆分为两个阶段:预留资源阶段(Try)和确认/取消阶段(Confirm/Cancel)。与AT模式不同,TCC模式需要开发者显式地编写业务逻辑来处理事务的各个阶段。
TCC模式的核心设计原则
- 业务拆分原则:TCC要求将业务操作明确拆分为Try、Confirm和Cancel三个方法
- 幂等性原则:Confirm和Cancel操作必须保证幂等性
- 空回滚处理:需要考虑Try未执行但Cancel被调用的情况
- 防悬挂处理:需要处理Cancel比Try先执行的情况
典型问题场景分析
在实际应用中,开发者经常会遇到这样的场景:一个TCC服务(RM-A)需要调用另一个服务(RM-B),但不希望RM-B被自动纳入AT事务管理。这种情况下,如果不做特殊处理,Seata会默认将RM-B纳入AT事务管理,导致undo_log表中记录不必要的数据。
解决方案对比
方案一:使用NOT_SUPPORTED传播属性
在RM-B服务方法上添加@GlobalTransactional(propagation = Propagation.NOT_SUPPORTED)注解,可以使其不参与当前事务。这种方案的优点是实现简单,但缺点是如果RM-B本身需要事务支持,它将无法与主事务协同工作。
方案二:正确使用TCC注解位置
根据Seata的设计原则,@TwoPhaseBusinessAction注解应该放在实际的资源管理器(RM)方法上,而不是事务管理器(TM)调用的方法上。这意味着:
- 如果RM-B需要参与TCC事务,应该在RM-B上添加TCC注解
- 如果只是简单调用而不需要事务支持,应该明确标注不参与事务
方案三:使用Saga模式(Seata 2.3+)
对于不需要严格资源预留但需要事务回滚能力的场景,Seata 2.3版本提供了基于注解的Saga模式实现。Saga模式更适合长事务场景,它将一个分布式事务拆分为多个本地事务,通过补偿机制保证最终一致性。
最佳实践建议
- 明确事务边界:在设计阶段就明确哪些服务需要参与事务,哪些不需要
- 合理使用传播属性:根据业务需求选择合适的传播行为
- 注解位置规范:TCC注解应放在实际的资源操作方法上
- 模式选择:根据业务特点选择TCC或Saga模式
- 异常处理:充分考虑各种异常场景,确保补偿逻辑的健壮性
总结
Seata的TCC模式为分布式事务提供了灵活的控制能力,但需要开发者深入理解其工作原理。通过合理使用事务传播属性和正确放置注解,可以构建出既满足业务需求又具备良好性能的分布式事务系统。对于不需要严格资源预留的场景,Seata 2.3提供的Saga模式注解方案也是一个值得考虑的选择。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
278
329
暂无简介
Dart
702
166
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111