APKiD项目新增NProtect AppGuard检测规则的技术解析
在移动应用安全分析领域,APKiD作为一款知名的Android应用特征识别工具,近期针对韩国NProtect公司开发的AppGuard加固方案进行了检测能力升级。本文将深入解析这次规则更新的技术细节。
背景概述
NProtect AppGuard是韩国INCA Internet公司开发的Android应用保护方案,采用本地库加固和DEX层保护的双重机制。近期发现其新版本变更了核心库的命名规范,导致现有检测规则失效。
技术实现分析
原生库检测优化
传统检测方案主要识别libnpshield.so
等固定命名模式,而新版AppGuard改用以下动态库名称:
libcompatible.so
(ARM架构)libcompatible_x86.so
(x86架构)
APKiD通过在packer.yara规则库中添加这两个特征字符串,实现了对新版库文件的精准识别。这种基于文件名的检测虽然简单直接,但在实际场景中具有极高的执行效率。
二进制特征检测
针对ELF格式的本地库文件,新增了两组特征码检测:
-
库文件路径特征
十六进制模式6C 69 62 63 6F 6D 70 61 74 69 62 6C 65 2E 73 6F 00
对应字符串".libcomptabile.so"的ASCII编码,用于识别被修改的库文件路径。 -
Java类特征
特征串#Lcom/inca/security/AppGuard/xClass;
的二进制编码,这是AppGuard注入到DEX层的核心类路径。该特征同时兼顾了DEX层和native层的关联检测。
技术验证
测试样本采用印度知名移动应用MPL Live(版本号未公开),验证显示:
- Dex层检测保持原有准确率
- 新增规则成功识别被重命名的native库
- 二进制特征检测有效覆盖加固后的ELF文件
技术意义
这次更新体现了APKiD项目三个重要特性:
- 持续演进 - 及时跟进商业加固方案的变种
- 深度检测 - 同时覆盖DEX和ELF层的特征
- 高效匹配 - 采用精确的二进制特征码而非模糊匹配
对于安全研究人员,此次更新提供了检测新版AppGuard加固的可靠方案;对于开发者,则展示了商业加固方案为对抗分析所做的策略调整。建议用户在分析韩国地区的Android应用时特别注意这些新特征。
注:本文技术细节基于开源社区讨论提炼,实际应用时建议结合具体环境验证。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~057CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0382- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









