UniTable 开源项目使用教程
1. 项目介绍
UniTable 是一个面向表格结构识别的统一训练框架,旨在通过自监督预训练(Self-Supervised Pretraining, SSP)技术,提升表格结构识别的性能。该项目结合了像素级输入的简单性和自监督预训练的有效性及可扩展性,将表格结构、单元格内容和单元格边界框的提取任务统一到一个任务无关的训练目标中,即语言建模。UniTable 在多个大型表格结构识别数据集上展示了其最先进的性能。
2. 项目快速启动
2.1 环境设置
首先,设置虚拟环境并激活它:
make done_venv
2.2 下载模型权重
从 HuggingFace 下载所有模型权重:
make done_download_weights
2.3 运行示例 Jupyter Notebook
使用你自己的表格图像尝试示例 Jupyter Notebook,记得选择 "unitable" 作为你的 Notebook 内核。
jupyter notebook notebooks/demo.ipynb
3. 应用案例和最佳实践
3.1 表格结构识别
UniTable 可以用于从图像中提取表格的结构信息,包括表格的行、列、单元格等。这对于需要从文档中自动提取表格数据的场景非常有用。
3.2 单元格内容提取
除了结构信息,UniTable 还可以提取表格中每个单元格的内容,这对于数据分析和文档处理非常有帮助。
3.3 单元格边界框提取
UniTable 还能够提取每个单元格的边界框信息,这对于需要精确位置信息的应用场景非常有用。
4. 典型生态项目
4.1 HuggingFace Transformers
UniTable 使用了 HuggingFace 的 Transformers 库,这是一个广泛使用的自然语言处理和计算机视觉模型库,提供了丰富的预训练模型和工具。
4.2 Weights & Biases
在训练过程中,UniTable 使用了 Weights & Biases 来跟踪训练进度和可视化训练曲线,这是一个用于机器学习实验管理和可视化的工具。
4.3 Jupyter Notebook
UniTable 提供了 Jupyter Notebook 示例,方便用户快速上手和实验,Jupyter Notebook 是一个广泛使用的交互式编程环境,特别适合数据科学和机器学习任务。
通过以上步骤,你可以快速上手 UniTable 项目,并利用其强大的表格结构识别功能进行各种应用开发。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00