Tenstorrent TT-Metal v0.58.0-rc6 技术解析与更新亮点
Tenstorrent TT-Metal 是一个面向AI加速的高性能计算框架,专注于为机器学习工作负载提供高效的硬件加速支持。该项目通过创新的架构设计和软件优化,显著提升了深度学习模型的推理和训练性能。
本次发布的v0.58.0-rc6版本带来了多项重要更新和改进,涵盖了从底层硬件支持到高层API功能的多个方面。我们将深入解析这些技术更新,帮助开发者更好地理解和使用这一强大的AI加速框架。
核心架构优化
本次更新对TT-Metal的底层架构进行了多项重要改进。首先移除了DispatchMemMap单例模式,将其所有权转移至MetalContext,这一变化简化了内存管理模型,提高了系统的可维护性和扩展性。同时,框架现在支持DRAM预取器的性能模式,能够根据工作负载特性动态调整预取策略,显著提升内存访问效率。
在设备支持方面,新版本修复了RISCV_SOFT_RESET_0_BRISC的值偏移问题,确保硬件复位操作的准确性。此外,还针对Blackhole(BH)和Wormhole(WH)架构优化了原位Halo多播功能,提升了多设备间的数据交换性能。
模型支持与性能提升
v0.58.0-rc6版本显著扩展了对多种AI模型的支持和优化:
-
YOLO系列模型:新增对yolov8s_world和yolov8x模型的追踪支持,同时为yolov9c模型提供了性能调优,使这些计算机视觉模型能够在TT-Metal平台上高效运行。
-
VAE解码器:添加了完整的VAE(变分自编码器)中间块和上采样块支持,为生成式AI应用提供了更完整的支持。
-
ResNet50稳定性:引入了专门的稳定性测试脚本,确保这一经典CNN模型在TT-Metal平台上的可靠运行。
-
SDXL优化:修复了分割卷积中的偏置问题,并更新了相关测试,提升了Stable Diffusion XL模型的性能和稳定性。
计算操作扩展
新版本在计算操作支持方面有多项重要扩展:
-
数据类型支持:为多种操作添加了整型支持,包括零比较操作(如eq)、关系运算等,扩展了框架的应用场景。
-
新操作实现:
- 实现了ttnn.sort的单核版本
- 新增ttnn.experimental.broadcast_to操作
- 添加了ttnn.stack操作支持
- 改进了argmax操作的多核支持,使其能够处理任意秩和形状的输入
-
现有操作优化:
- 为ttnn.add添加了uint16支持
- 优化了ttnn.upsample在nearest模式下的非均匀分片支持
- 改进了all_gather_concat对RM输入的支持,并为其输出添加了隐式tilize功能
性能分析与调试工具
本次更新增强了性能分析和调试能力:
-
性能分析:新增了生成每核心操作到操作时间的CSV功能,使开发者能够更精细地分析计算流水线。
-
调试工具:
- 添加了监视器来捕获对DRAM的noc_inline_dw_write操作
- 实现了设备性能分派边界的更新
- 针对BH架构禁用了TensixInlineWriteDynamicNoc以提高稳定性
-
测试改进:
- 更新了convnet_mnist的性能基准
- 添加了6U特定全网格带宽测试
- 实现了TM压力测试及相应修复
系统稳定性与部署改进
在系统稳定性和部署方面,v0.58.0-rc6版本包含多项重要改进:
-
内存管理:移除了持久缓冲区tt_stats在RMS中的释放操作,避免了潜在的内存问题。
-
设备管理:修复了多N150设备下ttnn.CreateDevice的问题,提高了多设备环境的可靠性。
-
部署优化:
- 开始提供-dev开发包
- 添加了用于包验证的Docker镜像
- 限制了xtensor-blas依赖的范围
-
编译改进:启用了更多编译器警告,帮助开发者及早发现潜在问题。
总结
Tenstorrent TT-Metal v0.58.0-rc6版本在模型支持、计算操作扩展、性能优化和系统稳定性等方面都有显著进步。这些更新不仅增强了框架的功能性,也提高了其在复杂AI工作负载中的表现。特别是对YOLO系列、VAE和SDXL等模型的支持优化,使得TT-Metal在计算机视觉和生成式AI领域的应用更加广泛和高效。
随着数据类型支持的扩展和新操作的加入,开发者现在能够实现更复杂的算法和模型。而性能分析和调试工具的增强,则为优化工作负载提供了更强大的支持。这些改进共同推动了TT-Metal作为一个高性能AI加速平台的发展,为开发者提供了更强大、更灵活的工具来构建和部署AI应用。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0304- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









