Apache Storm 新增 Worker CPU 使用率监控指标的技术解析
背景介绍
Apache Storm 作为一款分布式实时计算系统,其资源监控能力对于系统运维和性能调优至关重要。在最新版本中,Storm 开发团队针对 Worker 进程的 CPU 使用率监控进行了重要改进,使得在没有配置 cgroups 的环境下也能准确获取 CPU 使用数据。
技术改进内容
传统上,Storm 依赖 Linux 的 cgroups(控制组)机制来监控 Worker 进程的资源使用情况。然而在某些环境中,cgroups 可能未被配置或不可用,这导致系统无法获取关键的 CPU 使用率指标。
本次改进的核心是在 cgroups 不可用时,采用替代方案来采集 Worker 进程的 CPU 使用数据。具体实现包括:
-
多数据源采集策略:系统会优先尝试通过 cgroups 获取 CPU 数据,如果不可用则回退到基于进程统计的采集方式。
-
进程级监控:在没有 cgroups 的情况下,直接监控 Worker 进程及其子进程的 CPU 时间消耗,通过计算时间差值得出 CPU 使用率。
-
兼容性保障:新机制确保在各种部署环境下都能获取 CPU 监控数据,提高了系统的适应性和可靠性。
技术实现原理
新的 CPU 监控机制主要基于以下技术原理:
-
进程 CPU 时间统计:通过读取 /proc/[pid]/stat 文件获取进程的 CPU 时间(用户态和内核态时间总和)。
-
时间间隔采样:定期(默认1秒间隔)采样进程的 CPU 时间,通过两次采样的差值计算实际 CPU 消耗。
-
多核适配:将采集到的 CPU 时间按系统 CPU 核心数进行归一化处理,得到标准化的 CPU 使用率百分比。
-
子进程聚合:不仅监控 Worker 主进程,还统计其所有子进程的 CPU 消耗,反映完整的资源使用情况。
实际应用价值
这一改进为 Storm 运维带来了显著优势:
-
监控完整性:确保在所有部署环境下都能获取 CPU 使用数据,避免监控盲区。
-
故障排查:通过 CPU 使用率指标可以快速识别资源瓶颈,定位性能问题。
-
资源调度优化:为动态资源分配和负载均衡提供更全面的数据支持。
-
成本控制:帮助管理员更精确地评估和规划资源需求,避免过度配置。
最佳实践建议
对于使用新版 Storm 的用户,建议:
-
即使系统支持 cgroups,也可以对比两种采集方式的数据一致性。
-
在高负载场景下,可以适当调整 CPU 指标的采样频率,平衡监控精度和系统开销。
-
将 CPU 指标与其他资源指标(内存、网络等)结合分析,全面评估系统健康状况。
-
在容器化部署环境中,注意 cgroups 和直接进程监控的差异,选择最适合的监控方式。
总结
Apache Storm 对 Worker CPU 监控指标的改进,体现了其对系统可观测性的持续重视。这一功能增强了 Storm 在各种环境下的适应能力,为运维人员提供了更可靠的监控数据,有助于构建更稳定、高效的实时计算系统。随着分布式系统复杂度的不断提高,此类基础监控能力的完善将为上层应用提供更坚实的运行保障。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00