探秘Apache Gluten(Incubating):提升Spark SQL效率的利器
Apache Gluten是一个创新项目,正在Apache孵化器中孵化,旨在通过将JVM上的SQL引擎执行转移到原生引擎来提升大数据处理的速度。如果你是追求极致性能的Spark SQL用户,那么Gluten就是你一直在寻找的那个"胶水",它能无缝集成Spark和高性能原生库,最大化数据处理效率。
一、项目简介
在大数据世界中,Apache Spark以其稳定性和可扩展性赢得了广泛的赞誉,尤其适合处理大规模数据集。然而,针对其性能优化的挑战日益凸显。尽管引入了如Whole Stage Code Generation等优化,单个操作器的性能提升已趋平缓。另一方面,像Clickhouse、Arrow和Velox这样的原生库,凭借其原生实现、列式存储和向量化处理,展示了超越JVM SQL引擎的强大性能,但它们仅支持单节点执行。
Apache Gluten由此应运而生,其核心目标是在不改变Spark SQL接口的情况下,利用Spark的分布式控制流,结合高性能原生库,通过Substrait计划转换和JNI接口实现计算密集型任务的下推,从而在保持Spark易用性的同时,大幅提升查询性能。
二、技术剖析
Gluten的设计原则是在尽可能保留Spark现有逻辑的基础上,把计算密集的部分交给原生代码处理。这一过程涉及以下关键步骤:
- 将Spark的物理执行计划转化为Substrait计划。
- 使用JNI调用传递Substrait计划到原生层。
- 在原生侧构建并执行原生运算符链。
- 利用Columnar Batch返回结果给Spark,使用Spark的Columnar API进行处理。
目前,Gluten支持Clickhouse和Velox作为后端,后者是由Meta开发的数据处理库,提供了高性能和可扩展的组件。未来,项目还计划支持更多性能优化工具。
三、应用场景
Gluten适用于任何期望提升Spark SQL处理速度的环境,无需更改现有的DataFrame API或SQL查询语法,只需要正确配置即可使用。例如,在数据仓库查询、实时分析、大规模ETL流程等场景中,Gluten都可以显著提高数据处理速度,减少等待时间。
四、项目亮点
- 无缝集成:Gluten与Spark完全兼容,只需简单的配置就能启用。
- 高性能:利用原生库的特性,如列式存储、向量化处理,大幅提升查询速度。
- 灵活扩展:易于切换不同的原生后端,并且支持更多的性能工具接入。
- 智能容错:具备回退机制,对不支持的操作,可以自动转回Spark原生执行。
- 监控优化:提供详细的度量指标,帮助识别性能瓶颈和错误。
五、如何开始
你可以选择使用预发布的jar包直接启动Spark Shell,或者从源码编译并自定义配置。具体操作指南,请参考项目文档。
六、加入社区
现在就加入Apache Gluten社区,一起探索大数据处理的新边界!无论是技术讨论、问题报告还是贡献代码,我们都非常欢迎你的参与。
让我们共同见证Gluten为大数据处理带来的革命性突破!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0123
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00