探秘Apache Gluten(Incubating):提升Spark SQL效率的利器
Apache Gluten是一个创新项目,正在Apache孵化器中孵化,旨在通过将JVM上的SQL引擎执行转移到原生引擎来提升大数据处理的速度。如果你是追求极致性能的Spark SQL用户,那么Gluten就是你一直在寻找的那个"胶水",它能无缝集成Spark和高性能原生库,最大化数据处理效率。
一、项目简介
在大数据世界中,Apache Spark以其稳定性和可扩展性赢得了广泛的赞誉,尤其适合处理大规模数据集。然而,针对其性能优化的挑战日益凸显。尽管引入了如Whole Stage Code Generation等优化,单个操作器的性能提升已趋平缓。另一方面,像Clickhouse、Arrow和Velox这样的原生库,凭借其原生实现、列式存储和向量化处理,展示了超越JVM SQL引擎的强大性能,但它们仅支持单节点执行。
Apache Gluten由此应运而生,其核心目标是在不改变Spark SQL接口的情况下,利用Spark的分布式控制流,结合高性能原生库,通过Substrait计划转换和JNI接口实现计算密集型任务的下推,从而在保持Spark易用性的同时,大幅提升查询性能。
二、技术剖析
Gluten的设计原则是在尽可能保留Spark现有逻辑的基础上,把计算密集的部分交给原生代码处理。这一过程涉及以下关键步骤:
- 将Spark的物理执行计划转化为Substrait计划。
- 使用JNI调用传递Substrait计划到原生层。
- 在原生侧构建并执行原生运算符链。
- 利用Columnar Batch返回结果给Spark,使用Spark的Columnar API进行处理。
目前,Gluten支持Clickhouse和Velox作为后端,后者是由Meta开发的数据处理库,提供了高性能和可扩展的组件。未来,项目还计划支持更多性能优化工具。
三、应用场景
Gluten适用于任何期望提升Spark SQL处理速度的环境,无需更改现有的DataFrame API或SQL查询语法,只需要正确配置即可使用。例如,在数据仓库查询、实时分析、大规模ETL流程等场景中,Gluten都可以显著提高数据处理速度,减少等待时间。
四、项目亮点
- 无缝集成:Gluten与Spark完全兼容,只需简单的配置就能启用。
- 高性能:利用原生库的特性,如列式存储、向量化处理,大幅提升查询速度。
- 灵活扩展:易于切换不同的原生后端,并且支持更多的性能工具接入。
- 智能容错:具备回退机制,对不支持的操作,可以自动转回Spark原生执行。
- 监控优化:提供详细的度量指标,帮助识别性能瓶颈和错误。
五、如何开始
你可以选择使用预发布的jar包直接启动Spark Shell,或者从源码编译并自定义配置。具体操作指南,请参考项目文档。
六、加入社区
现在就加入Apache Gluten社区,一起探索大数据处理的新边界!无论是技术讨论、问题报告还是贡献代码,我们都非常欢迎你的参与。
让我们共同见证Gluten为大数据处理带来的革命性突破!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00