探秘Apache Gluten(Incubating):提升Spark SQL效率的利器
Apache Gluten是一个创新项目,正在Apache孵化器中孵化,旨在通过将JVM上的SQL引擎执行转移到原生引擎来提升大数据处理的速度。如果你是追求极致性能的Spark SQL用户,那么Gluten就是你一直在寻找的那个"胶水",它能无缝集成Spark和高性能原生库,最大化数据处理效率。
一、项目简介
在大数据世界中,Apache Spark以其稳定性和可扩展性赢得了广泛的赞誉,尤其适合处理大规模数据集。然而,针对其性能优化的挑战日益凸显。尽管引入了如Whole Stage Code Generation等优化,单个操作器的性能提升已趋平缓。另一方面,像Clickhouse、Arrow和Velox这样的原生库,凭借其原生实现、列式存储和向量化处理,展示了超越JVM SQL引擎的强大性能,但它们仅支持单节点执行。
Apache Gluten由此应运而生,其核心目标是在不改变Spark SQL接口的情况下,利用Spark的分布式控制流,结合高性能原生库,通过Substrait计划转换和JNI接口实现计算密集型任务的下推,从而在保持Spark易用性的同时,大幅提升查询性能。
二、技术剖析
Gluten的设计原则是在尽可能保留Spark现有逻辑的基础上,把计算密集的部分交给原生代码处理。这一过程涉及以下关键步骤:
- 将Spark的物理执行计划转化为Substrait计划。
- 使用JNI调用传递Substrait计划到原生层。
- 在原生侧构建并执行原生运算符链。
- 利用Columnar Batch返回结果给Spark,使用Spark的Columnar API进行处理。
目前,Gluten支持Clickhouse和Velox作为后端,后者是由Meta开发的数据处理库,提供了高性能和可扩展的组件。未来,项目还计划支持更多性能优化工具。
三、应用场景
Gluten适用于任何期望提升Spark SQL处理速度的环境,无需更改现有的DataFrame API或SQL查询语法,只需要正确配置即可使用。例如,在数据仓库查询、实时分析、大规模ETL流程等场景中,Gluten都可以显著提高数据处理速度,减少等待时间。
四、项目亮点
- 无缝集成:Gluten与Spark完全兼容,只需简单的配置就能启用。
- 高性能:利用原生库的特性,如列式存储、向量化处理,大幅提升查询速度。
- 灵活扩展:易于切换不同的原生后端,并且支持更多的性能工具接入。
- 智能容错:具备回退机制,对不支持的操作,可以自动转回Spark原生执行。
- 监控优化:提供详细的度量指标,帮助识别性能瓶颈和错误。
五、如何开始
你可以选择使用预发布的jar包直接启动Spark Shell,或者从源码编译并自定义配置。具体操作指南,请参考项目文档。
六、加入社区
现在就加入Apache Gluten社区,一起探索大数据处理的新边界!无论是技术讨论、问题报告还是贡献代码,我们都非常欢迎你的参与。
让我们共同见证Gluten为大数据处理带来的革命性突破!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0115
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00