MMDeploy中RetinaNet单类别模型导出问题的分析与解决
2025-06-27 10:04:56作者:郜逊炳
问题背景
在使用MMDeploy工具导出基于MMDetection的RetinaNet模型时,当模型配置为单类别检测任务且使用CrossEntropyLoss作为分类损失函数时,会出现导出失败的问题。具体表现为在模型导出过程中抛出"IndexError: max(): Expected reduction dim 2 to have non-zero size"错误。
技术分析
RetinaNet模型结构特点
RetinaNet是一种经典的单阶段目标检测器,其核心由特征金字塔网络(FPN)和两个子网络(分类子网络和回归子网络)组成。在MMDetection实现中,RetinaHead负责处理这两个子网络的输出。
问题根源
该问题源于MMDeploy中对RetinaNet模型导出时的特殊处理逻辑。具体来说,当配置为:
- 单类别检测(num_classes=1)
- 使用CrossEntropyLoss作为分类损失(use_sigmoid=False)
时,MMDeploy中的base_dense_head.py文件对分类分数进行了两次切片操作,导致最终用于非极大值抑制(NMS)的分数张量维度变为0,从而引发错误。
代码逻辑分析
在MMDeploy的base_dense_head.py中,处理流程如下:
- 第一次切片:从原始分类分数中排除背景类别(当use_sigmoid=False时)
- 第二次切片:再次从分数中排除最后一个类别(当use_sigmoid=False时)
对于单类别情况,经过这两次切片后,分类分数张量的最后一个维度变为0,导致后续的max()操作失败。
解决方案
临时解决方案
对于遇到此问题的用户,可以采取以下临时解决方案:
- 修改模型配置,使用Sigmoid激活函数(use_sigmoid=True)
- 手动修改MMDeploy源代码,移除其中一次不必要的切片操作
根本解决方案
该问题的根本解决方案是优化MMDeploy中对RetinaNet模型的导出逻辑:
- 对于单类别情况,应避免重复切片操作
- 统一处理不同类别数量情况下的分数处理逻辑
- 增加对边界条件的检查和处理
最佳实践建议
- 对于单类别检测任务,建议优先考虑使用Sigmoid激活函数
- 导出模型前,建议先验证模型在原生框架中的推理功能
- 关注MMDeploy的版本更新,及时获取官方修复
总结
MMDeploy作为模型部署工具,在支持各种检测模型导出时需要考虑多种边界条件。RetinaNet单类别导出问题揭示了在模型转换过程中对特殊配置情况的处理不足。通过理解问题本质和解决方案,用户可以更好地完成模型部署工作,同时也为开发者提供了优化工具的方向。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.13 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
316
React Native鸿蒙化仓库
JavaScript
262
325
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219