MMDeploy中RetinaNet单类别模型导出问题的分析与解决
2025-06-27 15:33:39作者:郜逊炳
问题背景
在使用MMDeploy工具导出基于MMDetection的RetinaNet模型时,当模型配置为单类别检测任务且使用CrossEntropyLoss作为分类损失函数时,会出现导出失败的问题。具体表现为在模型导出过程中抛出"IndexError: max(): Expected reduction dim 2 to have non-zero size"错误。
技术分析
RetinaNet模型结构特点
RetinaNet是一种经典的单阶段目标检测器,其核心由特征金字塔网络(FPN)和两个子网络(分类子网络和回归子网络)组成。在MMDetection实现中,RetinaHead负责处理这两个子网络的输出。
问题根源
该问题源于MMDeploy中对RetinaNet模型导出时的特殊处理逻辑。具体来说,当配置为:
- 单类别检测(num_classes=1)
- 使用CrossEntropyLoss作为分类损失(use_sigmoid=False)
时,MMDeploy中的base_dense_head.py文件对分类分数进行了两次切片操作,导致最终用于非极大值抑制(NMS)的分数张量维度变为0,从而引发错误。
代码逻辑分析
在MMDeploy的base_dense_head.py中,处理流程如下:
- 第一次切片:从原始分类分数中排除背景类别(当use_sigmoid=False时)
- 第二次切片:再次从分数中排除最后一个类别(当use_sigmoid=False时)
对于单类别情况,经过这两次切片后,分类分数张量的最后一个维度变为0,导致后续的max()操作失败。
解决方案
临时解决方案
对于遇到此问题的用户,可以采取以下临时解决方案:
- 修改模型配置,使用Sigmoid激活函数(use_sigmoid=True)
- 手动修改MMDeploy源代码,移除其中一次不必要的切片操作
根本解决方案
该问题的根本解决方案是优化MMDeploy中对RetinaNet模型的导出逻辑:
- 对于单类别情况,应避免重复切片操作
- 统一处理不同类别数量情况下的分数处理逻辑
- 增加对边界条件的检查和处理
最佳实践建议
- 对于单类别检测任务,建议优先考虑使用Sigmoid激活函数
- 导出模型前,建议先验证模型在原生框架中的推理功能
- 关注MMDeploy的版本更新,及时获取官方修复
总结
MMDeploy作为模型部署工具,在支持各种检测模型导出时需要考虑多种边界条件。RetinaNet单类别导出问题揭示了在模型转换过程中对特殊配置情况的处理不足。通过理解问题本质和解决方案,用户可以更好地完成模型部署工作,同时也为开发者提供了优化工具的方向。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C067
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0130
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
457
3.42 K
暂无简介
Dart
710
170
Ascend Extension for PyTorch
Python
264
299
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
181
67
React Native鸿蒙化仓库
JavaScript
284
332
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
838
415
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
431
130
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
103
118