探索CvT:将卷积引入视觉变换器的创新之作
在深度学习领域,视觉变换器(Vision Transformers, ViT)已成为图像识别和处理的热门技术。然而,为了进一步提升性能和效率,研究人员不断探索新的架构。今天,我们要介绍的是一个令人振奋的开源项目——CvT(Convolutional vision Transformers),它通过将卷积引入ViT,实现了性能和效率的双重提升。
项目介绍
CvT项目是基于论文《CvT: Introducing Convolutions to Vision Transformers》的官方实现。该项目通过引入卷积到ViT中,创造了一种新的架构,即卷积视觉变换器(CvT)。这一创新通过两种主要修改实现:一是包含新卷积令牌嵌入的分层变换器,二是利用卷积投影的卷积变换器块。这些修改不仅引入了卷积神经网络(CNN)的理想特性(如平移、尺度和畸变不变性),还保留了变换器的优点(如动态注意力、全局上下文和更好的泛化能力)。
项目技术分析
CvT的核心技术在于其独特的架构设计,它结合了CNN和ViT的优势。通过实验验证,CvT在ImageNet-1k上超越了其他Vision Transformers和ResNets,同时参数更少,计算量更低。此外,当在更大的数据集(如ImageNet-22k)上预训练并微调到下游任务时,性能提升得以保持。CvT-W24在ImageNet-1k验证集上的top-1准确率达到了87.7%,这一成绩令人瞩目。
项目及技术应用场景
CvT的技术适用于多种图像处理和识别场景,特别是在需要高分辨率图像处理的任务中表现出色。由于其架构的简化,CvT在处理高分辨率图像时,无需复杂的位置编码,这为实际应用带来了极大的便利。无论是医疗影像分析、自动驾驶还是智能监控,CvT都能提供强大的支持。
项目特点
- 性能卓越:在多个基准测试中,CvT均展现出超越传统ViT和CNN的性能。
- 效率高:通过减少参数和计算量,CvT在保持高性能的同时,提高了计算效率。
- 易于部署:项目提供了详细的安装和运行指南,使得用户可以轻松上手。
- 社区支持:作为一个开源项目,CvT欢迎社区的贡献和建议,这保证了项目的持续发展和完善。
总之,CvT项目是一个集成了卷积和变换器优点的创新之作,它不仅在技术上取得了突破,也为实际应用提供了强有力的支持。对于希望在图像处理领域取得突破的开发者和研究人员来说,CvT无疑是一个值得尝试的优秀选择。
如果你对C
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00