Apache Arrow-RS项目Parquet加密文件读取问题解析
在Apache Arrow-RS项目中,当尝试读取使用模块化加密的Parquet文件时,如果启用了页面索引(page index)功能,会导致读取失败并出现"ArrowError("Parquet argument error: External: bad data")"错误。这个问题主要影响那些需要在数据查询中使用过滤谓词(filter predicate)的场景,因为这种情况下会自动启用页面索引功能。
问题根源分析
该问题的核心在于SerializedPageReader组件的实现细节。具体来说,当SerializedPageReaderState处于Pages状态时,get_next_page方法没有正确处理加密页面的情况。错误发生在读取页面头部的过程中,这表明加密处理逻辑在页面索引读取路径中没有被正确集成。
进一步检查代码发现,不仅get_next_page方法存在问题,相关的peek_next_page和skip_next_page方法同样可能需要更新以支持加密页面的处理。这些方法共同构成了Parquet文件的页面读取机制,当启用页面索引功能时,系统会通过这些方法来定位和读取特定的数据页面。
技术背景
Parquet文件的模块化加密是一种细粒度的加密方案,它允许对文件的不同部分使用不同的加密方式。页面索引是Parquet的一种优化特性,它存储了数据页的统计信息,帮助查询引擎快速定位符合条件的数据页,从而减少实际需要读取的数据量。
在正常情况下,读取加密的Parquet文件需要提供正确的解密密钥和解密属性。但当同时启用页面索引功能时,现有的实现没有将解密逻辑与页面索引读取路径正确结合,导致系统无法正确处理加密的页面索引数据。
解决方案方向
要解决这个问题,需要对SerializedPageReader的实现进行以下改进:
-
在
get_next_page方法中增加对加密页面的处理逻辑,确保能够正确解密页面头部和数据内容。 -
更新
peek_next_page和skip_next_page方法,使其能够识别和处理加密页面。 -
确保页面索引读取路径与文件解密属性正确关联,在读取页面索引时应用相同的解密机制。
-
添加相应的测试用例,验证加密文件在启用页面索引功能时的读取正确性。
影响范围
这个问题主要影响以下使用场景:
- 使用Apache Arrow-RS读取加密Parquet文件
- 在查询中使用了过滤条件(自动启用页面索引)
- 使用了模块化加密方案
对于不启用页面索引的读取操作,或者读取未加密的Parquet文件,不会受到此问题影响。
开发者建议
对于需要使用加密Parquet文件并依赖页面索引功能的开发者,目前建议暂时禁用页面索引功能作为临时解决方案。长期解决方案需要等待上述代码修复完成后升级到修复版本。
这个问题也提醒我们,在使用加密数据时,需要确保所有数据访问路径(包括优化路径如页面索引)都正确集成了安全机制,否则可能导致功能异常或安全漏洞。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00