Polars-ST 空间数据处理库入门指南
什么是 Polars-ST
Polars-ST 是一个基于 Polars 的空间数据处理扩展库,它为 Polars 的数据结构(包括表达式、Series、DataFrame 和 LazyFrame)添加了丰富的空间数据处理能力。该库通过 st 命名空间提供了一系列几何操作函数,使得在 Polars 生态中进行空间数据分析变得简单高效。
安装方法
安装 Polars-ST 非常简单,只需使用 pip 命令:
pip install polars-st
基础使用
创建空间数据
Polars-ST 支持从多种格式创建空间数据。以下是一个从 WKT(Well-Known Text)格式创建 GeoDataFrame 的示例:
import polars_st as st
# 从WKT字符串创建GeoDataFrame
gdf = st.GeoDataFrame({
"geometry": [
"POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))",
"POLYGON ((0 0, 0 1, 1 1, 0 0))",
]
})
在底层,GeoDataFrame 构造函数会自动将这些 WKT 格式的几何对象解析为 EWKB(Extended Well-Known Binary)内部表示形式。除了 WKT,Polars-ST 还支持多种其他格式的空间数据输入。
从已有 Series 创建
如果你已经有一个包含空间数据的 Polars Series,可以直接使用解析函数:
import polars as pl
s = pl.Series(["POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))",
"POLYGON ((0 0, 0 1, 1 1, 0 0))"])
gdf = pl.select(geometry=st.from_wkt(s))
执行空间操作
Polars-ST 提供了丰富的空间操作函数,例如计算多边形面积:
# 计算几何列的面积
area = gdf.select(st.geom("geometry").st.area())
核心概念解析
GeoDataFrame 的本质
需要特别注意的是,Polars-ST 中的 GeoDataFrame 构造函数实际上返回的是一个标准的 Polars DataFrame,只是添加了空间数据处理的能力。这意味着你可以无缝地将 Polars-ST 的功能与 Polars 的其他功能结合使用。
st.geom 的妙用
st.geom() 是 Polars-ST 提供的一个实用函数,类似于 Polars 的 pl.col(),但专门用于处理几何列。它有以下特点:
- 类型支持:返回的是带有
st命名空间类型注解的GeoExpr,便于类型检查和代码补全 - 智能默认:当几何列名为默认的 "geometry" 时,可以省略列名参数
- 简化语法:对于单几何操作,可以直接调用函数而无需先获取几何列
# 简化写法1:省略列名
area = gdf.select(st.geom().st.area())
# 简化写法2:直接调用面积函数
area = gdf.select(st.area())
为什么选择 Polars-ST
- 性能优势:基于 Polars 的高性能数据处理引擎
- 易用性:提供简洁的 API 和智能默认值
- 类型安全:完善的类型注解支持
- 无缝集成:与 Polars 生态完美融合
总结
Polars-ST 为 Polars 用户提供了强大而便捷的空间数据处理能力。通过本文的介绍,你应该已经掌握了如何安装 Polars-ST、创建空间数据以及执行基本的空间操作。这个库特别适合需要在数据分析和空间计算之间无缝切换的场景,是地理空间数据分析的有力工具。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C085
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00