Polars-ST 空间数据处理库入门指南
什么是 Polars-ST
Polars-ST 是一个基于 Polars 的空间数据处理扩展库,它为 Polars 的数据结构(包括表达式、Series、DataFrame 和 LazyFrame)添加了丰富的空间数据处理能力。该库通过 st 命名空间提供了一系列几何操作函数,使得在 Polars 生态中进行空间数据分析变得简单高效。
安装方法
安装 Polars-ST 非常简单,只需使用 pip 命令:
pip install polars-st
基础使用
创建空间数据
Polars-ST 支持从多种格式创建空间数据。以下是一个从 WKT(Well-Known Text)格式创建 GeoDataFrame 的示例:
import polars_st as st
# 从WKT字符串创建GeoDataFrame
gdf = st.GeoDataFrame({
"geometry": [
"POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))",
"POLYGON ((0 0, 0 1, 1 1, 0 0))",
]
})
在底层,GeoDataFrame 构造函数会自动将这些 WKT 格式的几何对象解析为 EWKB(Extended Well-Known Binary)内部表示形式。除了 WKT,Polars-ST 还支持多种其他格式的空间数据输入。
从已有 Series 创建
如果你已经有一个包含空间数据的 Polars Series,可以直接使用解析函数:
import polars as pl
s = pl.Series(["POLYGON ((0 0, 0 1, 1 1, 1 0, 0 0))",
"POLYGON ((0 0, 0 1, 1 1, 0 0))"])
gdf = pl.select(geometry=st.from_wkt(s))
执行空间操作
Polars-ST 提供了丰富的空间操作函数,例如计算多边形面积:
# 计算几何列的面积
area = gdf.select(st.geom("geometry").st.area())
核心概念解析
GeoDataFrame 的本质
需要特别注意的是,Polars-ST 中的 GeoDataFrame 构造函数实际上返回的是一个标准的 Polars DataFrame,只是添加了空间数据处理的能力。这意味着你可以无缝地将 Polars-ST 的功能与 Polars 的其他功能结合使用。
st.geom 的妙用
st.geom() 是 Polars-ST 提供的一个实用函数,类似于 Polars 的 pl.col(),但专门用于处理几何列。它有以下特点:
- 类型支持:返回的是带有
st命名空间类型注解的GeoExpr,便于类型检查和代码补全 - 智能默认:当几何列名为默认的 "geometry" 时,可以省略列名参数
- 简化语法:对于单几何操作,可以直接调用函数而无需先获取几何列
# 简化写法1:省略列名
area = gdf.select(st.geom().st.area())
# 简化写法2:直接调用面积函数
area = gdf.select(st.area())
为什么选择 Polars-ST
- 性能优势:基于 Polars 的高性能数据处理引擎
- 易用性:提供简洁的 API 和智能默认值
- 类型安全:完善的类型注解支持
- 无缝集成:与 Polars 生态完美融合
总结
Polars-ST 为 Polars 用户提供了强大而便捷的空间数据处理能力。通过本文的介绍,你应该已经掌握了如何安装 Polars-ST、创建空间数据以及执行基本的空间操作。这个库特别适合需要在数据分析和空间计算之间无缝切换的场景,是地理空间数据分析的有力工具。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00